Total Synthesis of (+)-Piperazinomycin

Dale L. Boger* and Jiacheng Zhou
Contribution from the Department of Chemistry, The Scripps Research Institute, 10666 North Torrey Pines Road, La Jolla, California 92037

Received July 16, 1993^{*}

Abstract

A concise total synthesis of (+)-piperazinomycin (1), a novel naturally occurring macrocyclic piperazine possessing antimicrobial and antifungal activity, is detailed with implementation of animproved Ullmann macrocyclization reaction conducted on a diketopiperazine (53\%).

Piperazinomycin (1), a novel macrocyclic piperazine isolated as a minor metabolite of Streptoverticillium olivoreticuli subsp. neoenacticus ${ }^{1}$ and unambiguously identified by single-crystal X-ray a nalysis, ${ }^{2}$ constitutes the simplest naturally occurring agent possessing the parent 14 -membered para- and metacyclophane diaryl ether structural subunit found in bouvardin, ${ }^{3}$ deoxybouvardin, ${ }^{3}$ RA-I-X, ${ }^{4}$ OF4949-I-OF494-IV, ${ }^{5}$ and K-13. ${ }^{6}$ Our interest in the synthesis of the naturally occurring agents ${ }^{7-19}$ including those possessing potent cytotoxic and antitumor properties ${ }^{20.21}$ led to recent disclosure that the 14 -membered

[^0]cycloisodityrosine subunit of bouvardin, deoxybouvardin, and RA-I-X constitutes the pharmacophore. ${ }^{11,13,16}$ This has renewed interest in the synthesis and evaluation of piperazinomycin and structurally related agents since 1 and notably 10, a potential biosynthetic precursor, more closely mimic the structural and conformational properties of the cycloisodityrosine subunit found in the biologically more potent natural products (cis amide) than that of cycloisodityrosine itself (trans amide). However, efforts to critically examine the importance of the cycloisodityrosine subunit have been hampered by the synthetic inaccessibility of such systems. ${ }^{11,22-29}$ Characteristic of this synthetic inaccessibility, efforts to prepare 1 through 14 -membered macrolactamization have proven unsuccessful ${ }^{11}$ and attempts to implement an Ullmann macrocyclization reaction with $\mathrm{C}^{3}-\mathrm{O}^{2}$ bond formation have not provided 1. ${ }^{23}$ As a result, an indirect thallium trinitrate-promoted

1
two-step procedure for achieving the intramolecular phenol coupling has been introduced by Yamamura and co-workers ${ }^{30-32}$ and was employed successfully in the single existing total synthesis of $1 .{ }^{30}$ However, it required the use of dichloro- and dibromophenol coupling partners, the three key steps of the indirect

[^1]oxidative phenol coupling proceeded in low overall yields (19\%), and the protocol employed provided a regioisomeric mixture of cyclization products.

In conjunction with efforts designed to address whether conformational as well as structural features of cycloisodityrosine contribute to its inherent biological properties, ${ }^{11}$ herein we detail a concise total synthesis of (+)-piperazinomycin (1) based on the implementation of an improved and effective intramolecular Ullmann macrocyclization reaction for direct preparation of the elusive 14 -membered ring. In addition to the introduction and use of improved reaction conditions, the $\mathrm{C}^{1}-\mathrm{O}^{2}$ Ullmann macrocyclization reaction, which could be anticipated to be more facile than $\mathrm{C}^{3}-\mathrm{O}^{2}$ bond formation as a consequence of the decelerating effect of the electron-donating substituent ortho to the aryl iodide necessarily present in $\mathrm{C}^{3}-\mathrm{O}^{2}$ Ullmann closure, proved uniquely successful when conducted with a diketopiperazine substrate. In addition to the improved conversions available through use of this procedure, the Ullmann reaction permitted the use of readily available amino acids, directly provided the appropriately functionalized diaryl ethers without resorting to the use of the less accessible dichloro- and dibromophenols, provided a single regioselective cyclization reaction product in high yield ($>50 \%$), and may be conducted under conditions which minimize the extent of substrate racemization ($<3 \%$).

Total Synthesis of (+)-Piperazinomycin (1). O-Methylation of N-CBZ-3-acetyl-L-tyrosine methyl ester ${ }^{33}$ followed by BaeyerVilliger oxidation and subsequent methanolysis of the resulting acetate 3 provided O^{4}-methyl N -CBZ-L-DOPA methyl ester (4) (Scheme I). Catalytic hydrogenolysis of 4 and coupling (1.3 equiv EDCI, 1.3 equiv $\mathrm{HOBt}, \mathrm{DMF}, 25^{\circ} \mathrm{C}, 16 \mathrm{~h}, 95 \%$) of the resultant amine 5 with N-BOC-4-iodophenylalanine (6) ${ }^{34}$ provided 7 (Scheme I). Acid-catalyzed deprotection of the tert-butyloxycarbonyl group ($3.25 \mathrm{M} \mathrm{HCl}-\mathrm{EtOAc}, 25^{\circ} \mathrm{C}, 30 \mathrm{~min}, 100 \%$) followed by treatment of the crude amine hydrochloride salt 8 with N-methylmorpholine ${ }^{35}$ (1.3 equiv, 0.1 M HOAc in $i \mathrm{PrOH}$, reflux, $2 \mathrm{~h}, 94 \%$) provided the diketopiperazine 9 in excellent conversion. Ullmann macrocyclization of 9 was conducted most effectively by treatment with NaH (4 equiv) and $\mathrm{CuBr}-\mathrm{SMe}_{2}$ (10 equiv) in dry DMF under moderately dilute reaction conditions (0.004 M , reflux, $48 \mathrm{~h}, 53 \%$). Use of lower reaction temperatures and shorter reaction periods led to diminished conversions of 9 to 10 . Macrocyclization with closure of the 14 -membered ring to provide $10\left([\alpha]{ }^{25} \mathrm{D}+182\left(c 0.05, \mathrm{CH}_{3} \mathrm{OH}\right)\right.$) was established by the characteristic appearance of the shielded $\mathrm{C} 19-\mathrm{H}$ proton signal in the ${ }^{1} \mathrm{H}$ NMR spectrum at 4.13 ppm (DMSO- d_{6}) and was ultimately confirmed with the conversion of 10 to 1 . The extent of racemization under the reaction conditions was carefully assessed and found to be $<3 \%$. Given the importance of the Ullmann macrocyclization reaction, we examined the conversion of 9 to 10 in detail (Table I). Initial attempts to conduct the reaction under more conventional reaction conditions in pyridine (0.004 M , reflux, $9-24 \mathrm{~h}, 10-15 \% \mathrm{10}$) or under the modified reaction conditions we disclosed in recent studies in either collidine ${ }^{11,18}\left(0.004 \mathrm{M}, 130^{\circ} \mathrm{C}, 9-24 \mathrm{~h}\right.$, trace 10) or dioxane ${ }^{18}$ $\left(0.004 \mathrm{M}, 110^{\circ} \mathrm{C}, 9 \mathrm{~h}, 0 \%\right)$ failed to provide 10 in competitive conversions. Similarly, the use of methylcopper (4 equiv, 0.004 M pyridine, reflux, 9 h) to stoichiometrically generate the cuprous phenoxide ${ }^{11,12}$ failed to provide 10 in more than trace amounts. Consequently, the Ullmann macrocyclization reaction conducted in DMF at reflux proved uniquely successful at providing 10. In part, this may be attributed to the effect of the increased reaction temperature ($c a .156^{\circ} \mathrm{C}$, reflux) and the relatively nonbasic polar, aprotic nature of the reaction solvent (vs pyridine or collidine), resulting in enhanced substrate and product stability under the

[^2]
Scheme I

thermal reaction conditions. An added benefit of the mild, nonbasic reaction conditions was the minimization of the extent of substrate racemization prior to cyclization. The Ullmann macrocyclization reaction is conducted under conditions where the secondary amides are deliberately deprotonated prior to exposure to the thermal reaction conditions. Subsequent racemization of 9 requires anion generation α to and cross-conjugated with the amide anions. Presumably, subjection of the trianion of 9 to refluxing DMF under the conditions of the Ullmann reaction is not sufficient to lead to further deprotonation and racemization of the diketopiperazine.

The final conversion of 10 topiperazinomycin was accomplished by two complementary approaches (Scheme II). First, demethylation of $\mathbf{1 0}(\mathbf{4 8 \%} \mathrm{HBr}-\mathrm{HOAc}$, reflux, $45 \mathrm{~min}, 84 \%)$ followed by acetylation of 11 a (excess $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, $25^{\circ} \mathrm{C}, 4 \mathrm{~h}, 94 \%$) provided 11b ($[\alpha]^{25} \mathrm{D}+188$ ($c 0.15$, pyridine)), identical in all comparable respects with authentic $11 \mathrm{~b}\left({ }^{1} \mathrm{H}\right.$ NMR, IR, $\left.[\alpha]_{\mathrm{D}}\right) .{ }^{30}$ The conversion of 11 b to 1 following the five-step sequence detailed by Yamamura ${ }^{30}$ formally completes a total synthesis of (+).

Table I. Representative Results of the Ullmann Macrocyclization Reaction of 9 to 10

entry	base (equiv)	$\mathrm{Cu}(\mathrm{I})$ reagent (equiv)	solvent ${ }^{\text {a }}$	temp (bath, ${ }^{\circ} \mathrm{C}$)	reaction time (h)	10 (\%)	recovered 9 (\%)
1	NaH (4)	$\mathrm{CuBr}-\mathrm{SMe}_{2}(10)$	DMF	170	48	53	0
2	NaH (4)	$\mathrm{CuBr}-\mathrm{SMe}_{2}$ (10)	DMF	170	36	42	9
3	NaH (4)	$\mathrm{CuBr}-\mathrm{SMe}_{2}$ (10)	DMF	170	24	35-40	15
4	NaH (4)	$\mathrm{CuBr}-\mathrm{SMe}_{2}$ (10)	pyridine	130	9	10-15	65
5	NaH (4)	$\mathrm{CuBr}-\mathrm{SMe}_{2}$ (10)	pyridine	130	24	10	50
6	NaH (4)	$\mathrm{CuBr}-\mathrm{SMe}_{2}(10)$	collidine	130	9	trace	>50
7	NaH (4)	$\mathrm{CuBr}-\mathrm{SMe}_{2}(10)$	collidine	130	24	trace	40
8	NaH (4)	$\mathrm{CuBr}-\mathrm{SMe}_{2}$ (10)	pyridine/collidine (1:1)	130	15	trace	60
9	NaH (4)	$\mathrm{CuBr}-\mathrm{SMe}_{2}$ (10)	HMPA/collidine	130	9	trace	75
10	$\mathrm{NaH}(4)$	$\mathrm{CuBr}-\mathrm{SMe}_{2}(10)$	dioxane	110	9	0	72
11		MeCu (4)	pyridine	130	9	trace	>50

${ }^{a}$ Conducted at 0.004 M at reflux (pyridine $115^{\circ} \mathrm{C}$, dioxane $101^{\circ} \mathrm{C}$, DMF $156^{\circ} \mathrm{C}$) or at the indicated bath temperature.
Scheme II

13

1

$$
\left\{\begin{array}{l}
\mathrm{BH}_{3} \cdot \mathrm{THF} \\
70 \%
\end{array}\right.
$$

12
piperazinomycin. Alternatively, $\mathbf{1 0}$ was converted to piperazinomycin more directly in two steps. In contrast to the report of Yamamura, we have found that the direct reduction of 10 to 13 may be accomplished upon treatment with diborane (15 equiv $\mathrm{BH}_{3}-\mathrm{THF}, \mathrm{THF}, 45-50^{\circ} \mathrm{C}, 72 \mathrm{~h}, 43 \%$) under the conditions detailed by Jung. ${ }^{23}$ The initial treatment of $\mathbf{1 0}$ with $\mathrm{BH}_{3}-\mathrm{THF}$ provided a mixture of $13(43 \%)$ and $12(43 \%)$. Efforts to drive the reaction to completion employing longer reaction times, higher reaction temperatures, or larger excesses of reagent did not provide

Figure 1. (A) OPLSA low-energy conformation of 11a. (B) Cycloisodityrosine conformation taken from X-ray crystal structure of bouvardin. (C) Cycloisodityrosine conformation taken from OPLSA lowest energy conformation of deoxybouvardin.
further conversion to 13. However, isolation of 12 and its resubjection to the reduction conditions provided $13(70 \%)$, and the conversion of $\mathbf{1 0}$ to $\mathbf{1 3}$ with this recycling of $\mathbf{1 2}$ provided $\mathbf{1 3}$ in 73% overall yield. Alternative reduction conditions with $\mathrm{LiAlH}_{4}, \mathrm{BH}_{3}-\mathrm{SMe}_{2}, \mathrm{NaBH}_{3}(\mathrm{OAc})$, or $\mathrm{LiBH}_{3}\left(\mathrm{iPr}_{2} \mathrm{~N}\right)$ failed to provide 13 in competitive conversions. Subsequent demethylation of 13 upon treatment with $48 \% \mathrm{HBr}-\mathrm{HOAc}$ (reflux, $1.5 \mathrm{~h}, 82 \%$) provided (+)-piperazinomycin (1) $\left([\alpha]^{25}{ }_{\mathrm{D}}+31\left(c 0.2, \mathrm{CH}_{3} \mathrm{OH}\right)\right.$), identical in all respects with authentic material (${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, IR, UV, MS, $\left.[\alpha]_{\mathrm{D}}\right) .{ }^{2}$

Conformational analysis revealed a single low-energy conformation available to 11a (within $12 \mathrm{kcal} / \mathrm{mol}$), and it was found to possess a partial or flattened boat diketopiperazine ring. Consequently, this single conformation constitutes the predicted exclusive conformation available to the agent. Consistent with this expectation, the conformation of 11a located proved compatible with the observed NOEs in the 2D ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY NMR spectra and corresponds precisely to the conformation of the cycloisodityrosine subunit of bouvardin observed in the singlecrystal X-ray structure determination (RMS $=0.18 \AA$ for all non-hydrogen atoms) ${ }^{3}$ (Figure 1). This precise adoption of the cis amide conformation of cycloisodityrosine found within bouvardin (RMS $=0.18 \AA$), deoxybouvardin (RMS $=0.14 \AA$), and the related RA-I-X is especially important and suggests that derivatives of $10-11$ may substitute nicely for the active conformation of the natural product pharmacophore. Consistent with this expectation, 10 and the related agent 11a exhibited in vitro cytotoxic activity at a level nearly equivalent to that of the parent cycloisodityrosine derivatives (Figure 2). Global and lowlying minima ($\leq 12 \mathrm{kcal} / \mathrm{mol}$) were located in the conformational searches by repetitive use directed Monte Carlo sampling and

Table II. Representative Additional Ullmann Macrocyclization Studies

agent	R	base (equiv)	$\mathrm{Cu}(\mathrm{I})$ reagent (equiv)	solvent ${ }^{a}$	temp (bath, ${ }^{\circ} \mathrm{C}$)	reaction time (h)	products (\% yield)
7	BOC	NaH (3)	$\mathrm{CuBr}-\mathrm{SMe}_{2}(10)$	pyridine	130	9	14 (5-10), 15 (10-15), 16 (4-9), 7 (20-40)
7	BOC	NaH (3)	$\mathrm{CuBr}-\mathrm{SMe}_{2}$ (10)	pyridine	130	20	14 (5), 15 (12), 16 (6), 7 (13)
7	BOC	NaH (3)	$\mathrm{CuBr}-\mathrm{SMe}_{2}(10)$	collidine	130	9	16 (12), 7 (22)
7	BOC		MeCu (3)	dioxane	110	9	7 (79)
7	BOC		MeCu (3)	pyridine	130	9	16 (10), 7 (28)
7	BOC		MeCu (3)	collidine	130	9	16 (25), 7 (24)
17	CBZ	NaH (3)	$\mathrm{CuBr}-\mathrm{SMe}_{2}$ (10)	pyridine	130	9	16 (12), 17 (35)
17	CBZ	NaH (3)	$\mathrm{CuBr}-\mathrm{SMe}_{2}$ (10)	collidine	130	9	16 (30), 17 (20)
18	SES	NaH (3)	$\mathrm{CuBr}-\mathrm{SMe}_{2}(10)$	pyridine	130	9	no cyclization
18	SES	NaH (3)	$\mathrm{CuBr}-\mathrm{SMe}_{2}(10)$	collidine	130	9	no cyclization
19	H	NaH (2)	$\mathrm{CuBr}-\mathrm{SMe}_{2}$ (10)	pyridine	130	9	$9+19$ (nd)
19	H	NaH (2)	$\mathrm{CuBr}-\mathrm{SMe}_{2}(10)$	collidine	130	9	9 (32)
19	H		MeCu (3)	pyridine	130	9	9 (nd)
19	H		MeCu (3)	collidine	130	9	9 (22)
24		NaH (3)	$\mathrm{CuBr}-\mathrm{SMe}_{2}$ (10)	pyridine	130	24	no cyclization
25-27		NaH (1-3)	$\mathrm{CuBr}-\mathrm{SMe}_{2}$ (10)	DMF	170	36	no cyclization

${ }^{\circ}$ Conducted at 0.004 M at reflux (pyridine $115^{\circ} \mathrm{C}$, DMF $156^{\circ} \mathrm{C}$) or at the indicated bath temperature.

14

	Agent	rel IC ${ }_{50}$ (L1210)
	$\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{CH}_{3}$	1.0^{3}
	$\mathrm{R}^{1}=H \mathrm{R}^{2}=\mathrm{CH}_{3}$	2.0^{3}
14	$R^{1}=R^{\mathbf{2}}=\mathrm{H}$	0.5
15		0.9
10		1.5
11a		3.0
11b		inactive

Figure 2.
subsequent minimization of conformations generated by random variations ($0-180^{\circ} \mathrm{C}$) in 8 of the 10 available torsional angles excluding those originating in the phenyl rings (MacroModel, Batchmin Version 3.5a, OPLSA and AMBER force fields, $\mathrm{MCMM}=1000, \mathrm{MCSS}=2,12 \mathrm{kcal} / \mathrm{mol}$ window$)$. The global minimum for 11a was located 290 times.
Additional Studies on the 14-Membered-Ring Ullmann Macrocyclization Reaction. Prior to and concurrent with the implementation of the successful Ullmann macrocyclization of 9 to provide 10, a number of alternatives were examined. The results of these studies merit a detailed discussion since they provide an important perspective on the successful efforts leading to the formation of the piperazinomycin 14 -membered ring. Our initial efforts focused on attempts to conduct the Ullmann macrocyclization prior to diketopiperazine or piperazine introduction. Subjection of 7 to a range of conditions for effecting the Ullmann macrocyclization reaction provided 14^{36} in low yield (5-10\%) under optimal conditions, and its generation was always accompanied by the competitive formation of $15(5-15 \%)^{37}$ and $16(4-25 \%)^{38}$ (eq 1 and Table II). While the combined yield of macrocyclization product approached $15-20 \%$, extensive but not exhaustive efforts to define reaction conditions where the intramolecular N-acylation ($7 \rightarrow 14 / 16 \rightarrow 15$) might be minimized including the use of methylcopper for stoichiometric

15

16
generation of the cuprous phenoxide ${ }^{1,12}$ were not successful. Moreover, this competitive reaction proved to be an inherent problem with all acyclic substrates examined under the thermal conditions of the Ullmann reaction. Although not pursued, it is also likely that O - versus N -acylation may occur under the reaction conditions and that products derived from amide and/or carbamate intramolecular O-acylation were present but not isolated from the reaction mixtures.

The CBZ derivative 17^{39} (eq 2) proved to be even more prone to competitive intramolecular acylation, presumably due to the diminished steric hindrance of the carbamate derivative. Subjection of 17 to a select set of conditions for effecting the Ullmann macrocyclization reaction provided only 16 and recovered 17 . In

[^3]
(2)
no cyclization
deliberate efforts to avoid the intramolecular acylation, efforts to effect the Ullmann macrocyclization of the β-(trimethylsilyl)ethylsulfonyl carbamate 18^{40} did not prove promising and the free amine 19^{41} preferentially closed to the diketopiperazine 9 under conventional Ullmann macrocyclization conditions. Consequently, the use of the diketopiperazine 9 in the Ullmann macrocyclization served the additional purpose of incorporating the substrate functionality in a protected form, precluding prevalent competitive reactions that may be observed with common acyclic precursors.

[^4]Scheme III

5

20

22

23

In a final effort to avoid the intramolecular N-acylation reaction, the substrate 22^{42} was prepared in which the linking amide was converted to tertiary N-benzylamide (Scheme III) and unsuccessfully subjected to four representative Ullmann macrocyclization reaction conditions (Table II). Although this was not investigated in detail, the observation was not unexpected. It is likely that substitution of the linking amide with the bulky benzyl group further decelerates the inherently slow macrocyclization reaction ${ }^{19}$ in addition to serving its prescribed role of blocking the intramolecular N-acylation reaction.

More surprising were the unexpected comparisons of the highly successful Ullmann closure of 9 with the unsuccessful Ullmann macrocyclization reactions of $\mathbf{2 4 - 2 7 ^ { 4 3 }}$ (Scheme IV). With the piperazines 24-27, there is no potential of competitive substrate racemization under the reaction conditions and, consequently, they were viewed as more appropriate Ullmann macrocyclization substrates. However, no traces of $\mathbf{2 8 - 3 0}$ were detected even with the piperazine substrates which incorporate the key $\mathrm{C}^{1}-\mathrm{O}^{2}$ Ullmann ring closure and with use of the optimized reaction conditions ($\mathrm{NaH}, 10$ equiv $\mathrm{CuBr}-\mathrm{SMe}_{2}, \mathrm{DMF}, 0.004 \mathrm{M}$, reflux, 12-48 h).

[^5]
Scheme IV

$28 \mathrm{R}=\mathrm{H}$
$29 \mathrm{R}=\mathrm{CO}_{2} \mathrm{CH}_{3}$
30 R=CBZ

The extension of the studies detailed herein to the preparation of structural and conformational analogs of piperazinomycin and cycloisodityrosine are in progress and will be reported in due course.

Experimental Section

3-Acetyl-O-methyl-N-[(phenylmethoxy)carbonyl]-L-tyrosine Methyl Ester (2). A solution of 3-acetyl- N-[(phenylmethoxy)carbonyl]-L-tyrosine methyl ester ${ }^{33}(3.0 \mathrm{~g}, 8.1 \mathrm{mmol})$ in dry DMF (15 mL) was treated with

[^6]$\mathrm{CH}_{3} \mathrm{I}\left(3.45 \mathrm{~g}, 1.5 \mathrm{~mL}, 24 \mathrm{mmol}, 3.0\right.$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.23 \mathrm{~g}, 16.2$ mmol, 2.0 equiv) at $25^{\circ} \mathrm{C}$ under Ar. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 6 h and filtered. The filtrate was poured into $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaCl}(15 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. Flash chromatography ($\mathrm{SiO}_{2}, 3 \times 20 \mathrm{~cm}$, $15-30 \%$ EtOAc-hexane gradient elution) afforded $2(2.92 \mathrm{~g}, 3.11 \mathrm{~g}$ theoretical, 94%) as a colorless oil which solidified upon standing: mp $84-85^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}+61\left(c 1.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $7.48\left(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{C}^{2}-\mathrm{H}\right), 7.30(\mathrm{~m}, 5 \mathrm{H}, \mathrm{PhH}), 7.19(\mathrm{dd}, 1 \mathrm{H}, J$ $\left.=2.4,8.4 \mathrm{~Hz}, \mathrm{C}^{6}-\mathrm{H}\right), 6.85\left(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{C}^{5}-\mathrm{H}\right), 5.29(\mathrm{~d}, 1 \mathrm{H}, J$ $=8.0 \mathrm{~Hz}, \mathrm{NH}), 5.07\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.60(\mathrm{dd}, 1 \mathrm{H}, J=5.8,7.9 \mathrm{~Hz}$, $\mathrm{CHCH} 2), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.06(\mathrm{dq}, 2 \mathrm{H}$, $\left.J=6.0,14.0 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right), 2.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}$, $100 \mathrm{MHz}) \delta 199.3,171.8,158.1,155.5,136.1,134.4,131.1,128.4,128.1$, 128.0, 127.8, 127.7, 111.8, 66.9, 55.5, 54.8, 52.4, 37.1, 31.8; IR (KBr) $\nu_{\text {max }} 3366,2938,2838,1753,1727,1667,1610,1520,1504,1427,1359$, 1265, 1219, 1182, 1057, 1022, 976, 815, 794, 745, $700 \mathrm{~cm}^{-1}$; FABHRMS (NBA/CsI) $m / e 518.0602\left(\mathrm{M}^{+}+\mathrm{Cs}, \mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{6}\right.$ requires 518.0580$)$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{6}: \mathrm{C}, 65.45 ; \mathrm{H}, 5.97 ; \mathrm{N}, 3.64$. Found: C , 65.08; H, 5.86; N, 4.00 .

3-Acetoxy- \boldsymbol{O}-methyl- \boldsymbol{N}-[(phenylmethoxy)carbonyl]-L-tyrosine Methyl Ester (3). A solution of $2(2.92 \mathrm{~g}, 7.5 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was treated with m-chloroperbenzoic acid (m CPBA, $55-60 \%$ grade, 5.18 $\mathrm{g}, 16.5 \mathrm{mmol}, 2.2$ equiv) and warmed at $40^{\circ} \mathrm{C}$ for 20 h . The cooled reaction mixture was concentrated in vacuo, dissolved in EtOAc (60 mL), washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}(3 \times 20 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 20 \mathrm{~mL})$, and saturated aqueous $\mathrm{NaCl}(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. Flash chromatography $\left(\mathrm{SiO}_{2}\right.$, $3 \times 20 \mathrm{~cm}, 10-30 \%$ EtOAC-hexane gradient elution) afforded 3 (2.87 $\mathrm{g}, 3.00 \mathrm{~g}$ theoretical, 96%) as a colorless oil which solidified upon standing: $\mathrm{mp} 86-87^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}+45\left(c 0.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $400 \mathrm{MHz}) \delta 7.29-7.37(\mathrm{~m}, 5 \mathrm{H}, \mathrm{PhH}), 6.93(\mathrm{dd}, 1 \mathrm{H}, J=2.0,8.4 \mathrm{~Hz}$, $\left.\mathrm{C}^{6}-\mathrm{H}\right), 6.85\left(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{C}^{5}-\mathrm{H}\right), 6.78\left(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{C}^{2}-\mathrm{H}\right)$, $5.26(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{NH}), 5.09\left(\mathrm{dd}, 2 \mathrm{H}, J=2.0,12.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, 4.61 (dd, $1 \mathrm{H}, J=5.8,8.0 \mathrm{~Hz}, \mathrm{CHCH} 2), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 3.70$ (s, 3H, $\mathrm{CO}_{2} \mathrm{CH}_{3}$), 2.99-3.10 (m, $2 \mathrm{H}, \mathrm{CHCH}_{2}$), $2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCOCH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 171.8,168.9,155.6,150.2,139.5,136.2$, $131.1,128.5,128.1,128.0,127.5,123.7,112.4,66.9,55.8,54.8,52.4$, 37.3, 20.6; IR (KBr) $\nu_{\max } 3346,2955,2841,1766,1738,1716,1514$, 1440, 1367, 1265, 1209, 1119, 1056, 1022, 904, 813, 750, $697 \mathrm{~cm}^{-1}$; FABHRMS (NBA/CsI) m/e $534.0529\left(\mathrm{M}^{+}+\mathrm{Cs}, \mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{7}\right.$ requires
(43) For 24: ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta 9.35$ (br s, 4 H , two NH$\mathrm{HBr}), 9.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 7.77\left(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{C}^{3 \prime}\right.$ - and $\left.\mathrm{C}^{3 "}-\mathrm{H}\right), 7.25$ (d, $2 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{C}^{2 \prime}$ - and $\mathrm{C}^{6^{\prime \prime}}-\mathrm{H}$), $6.93\left(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{C}^{5}-\mathrm{H}\right.$), 6.79 (br s, $\left.1 \mathrm{H}, \mathrm{C}^{6}-\mathrm{H}\right), 6.77\left(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{C}^{2}-\mathrm{H}\right), 3.86(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH})$, $3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 3.07-3.17(\mathrm{~m}, 8 \mathrm{H})$; IR (KBr) $\nu_{\max } 3415,2931,1596$, $1508,1440,1276,1250,1331,1062,1025,1008,969,883,800,763 \mathrm{~cm}^{-1}$. For 25: pale-yellow oil which solidified upon standing, mp $194-196^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}$ $-10.1\left(c 0.3, \mathrm{CH}_{3} \mathrm{OH}\right){ }^{1} \mathrm{H}$ NMR (CD3 $\left.\mathrm{OD}, 400 \mathrm{MHz}\right) \delta 7.58(\mathrm{~d}, 2 \mathrm{H}, J=8.1$ $\left.\mathrm{Hz}, \mathrm{C}^{3 "}-\mathrm{and} \mathrm{C}^{3 "}-\mathrm{H}\right), 6.99\left(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{C}^{2 \prime}-\right.$ and $\left.\mathrm{C}^{6 \prime \prime}-\mathrm{H}\right), 6.78(\mathrm{~d}$, $\left.1 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{C}^{\prime}-\mathrm{H}\right), 6.64\left(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{C}^{2}-\mathrm{H}\right), 6.61(\mathrm{dd}, 1 \mathrm{H}, J$ $\left.=2.0,8.1 \mathrm{~Hz}, \mathrm{C}^{6}-\mathrm{H}\right), 3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 3.12-3.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2}\right)$, $2.70-2.90(\mathrm{~m}, 8 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta 148.2,147.9,139.0$, $138.2,132.5,130.7,121.4,117.1,113.0,92.9,56.4,55.6,55.2,45.3,37.3$, 36.6; IR (KBr) $\nu_{\max } 3405,2933,2834,1590,1508,1441,1276,1251,1224$, $1134,1026,1007,873,801,761 \mathrm{~cm}^{-1}$; FABHRMS (NBA/CsI) $m / e 570.9859$ ($\mathrm{M}^{+}+\mathrm{Cs}, \mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{I}$ requires 570.9859). For 26: colorless oil which solidified upon standing, mp $69-70^{\circ} \mathrm{C} ;[\alpha]{ }^{25} \mathrm{D}+43\left(c 0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} N \mathrm{NR}$ $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.57\left(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{C}^{3 \prime}\right.$ - and $\left.\mathrm{C}^{\prime \prime}-\mathrm{H}\right), 6.82(\mathrm{~d}, 2 \mathrm{H}$, $J=8.1, \mathrm{~Hz}, \mathrm{C}^{2}-$ and $\left.\mathrm{C}^{6}-\mathrm{H}\right), 6.74\left(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{C}^{3}-\mathrm{H}\right), 6.66(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=2.0 \mathrm{~Hz}, \mathrm{C}^{2}-\mathrm{H}\right), 6.53\left(\mathrm{dd}, 1 \mathrm{H}, J=2.0,8.2 \mathrm{~Hz}, \mathrm{C}^{6^{\prime}}-\mathrm{H}\right), 5.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, 4.05-4.10 (m, 2H, CHCH2 $), 3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 3.78-3.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2}\right.$ or NHCH_{2}), $3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 2.55-2.78(\mathrm{~m}$, $6 \mathrm{H}, \mathrm{CHCH}_{2}$ and $\left.\mathrm{NHCH}_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 156.1,145.5$, $145.3,137.5,136.4,131.4,129.7,120.8,115.5,110.6,91.9,56.1,54.3,54.1$, $52.74,52.72,41.2,37.2$; IR (KBr) $\nu_{\max } 3383,3016,2955,2840,1715,1713$, $1682,1667,1589,1505,1451,1409,1350,1295,1263,1169,1121,1027$, 1007, $962,789,750,731 \mathrm{~cm}^{-1}$; FABHRMS (NBA/CsI) $\mathrm{m} / \mathrm{e} 686.9975\left(\mathrm{M}^{+}\right.$ $+\mathrm{Cs}, \mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{I}$ requires 686.9968). For 27: colorless oil which solidified upon standing, $\mathrm{mp} 66-67^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}+33\left(c 0.88, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 7.49\left(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{C}^{3 \prime \prime}-\right.$ and $\left.\mathrm{C}^{\prime \prime}-\mathrm{H}\right), 7.27-7.38(\mathrm{~m}, 10 \mathrm{H}$, $\mathrm{PhH}), 6.72\left(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{C}^{s^{\prime}}-\mathrm{H}\right), 6.68\left(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{C}^{2}{ }^{2}-\right.$ and $\left.\mathrm{C}^{6^{\prime \prime}}-\mathrm{H}\right), 6.62\left(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{C}^{2}-\mathrm{H}\right), 6.46(\mathrm{dd}, 1 \mathrm{H}, J=2.0,8.2 \mathrm{~Hz}$, $\mathrm{C}^{\left.6^{\prime}-\mathrm{H}\right),} 5.56(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 5.12\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCO}\right), 5.08\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCO}\right)$, 4.04-4.12 (m, $2 \mathrm{H}, \mathrm{CHCH} 2$), $3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 3.81-3.92\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2}\right.$ or $\left.\mathrm{NCH}_{2}\right), 2.59-2.76\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CHCH}_{2}\right.$ and $\left.\mathrm{NCH}_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta 155.5,145.6,145.3,137.4,136.4,136.3,131.3,129.6,128.6,128.5$, $128.2,128.1,127.9,120.8,115.5,110.6,91.9,67.4,56.0,54.5,41.3,37.2$; IR (KBr) $\nu_{\max } 3516,3382,3031,2935,1682,1675,1589,1511,1414,1353,1271$, $1160,1118,1025,1007,754,733,697,667 \mathrm{~cm}^{-1}$; FABHRMS (NBA/CsI) $m / e 839.0611\left(\mathrm{M}^{+}+\mathrm{Cs}, \mathrm{C}_{35} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{I}\right.$ requires 839.0594).
534.0529). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{7}: \mathrm{C}, 62.84 ; \mathrm{H}, 5.74 ; \mathrm{N}, 3.49$. Found: C, 62.47; H, 5.78; N, 3.84.

3-Hydroxy- O -methyl- \boldsymbol{N} - (phenylmethoxy) carbonyl]-L-tyrosine Methyl Ester (4). A solution of $3(2.97 \mathrm{~g}, 7.42 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{OH}(10 \mathrm{~mL})$ was added to a solution of $0.25 \mathrm{~N} \mathrm{HCl}-\mathrm{CH}_{3} \mathrm{OH}(30 \mathrm{~mL})$ prepared by dropwise addition of $\mathrm{CH}_{3} \mathrm{COCl}(583 \mathrm{mg}, 0.53 \mathrm{~mL}, 7.42 \mathrm{mmol}, 1.0$ equiv) to 30 mL of $\mathrm{CH}_{3} \mathrm{OH}$ at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to $25^{\circ} \mathrm{C}$ and stirred for 10 h before being concentrated in vacuo. Flash chromatography $\left(\mathrm{SiO}_{2}, 3 \times 20 \mathrm{~cm}, 15-30 \% \mathrm{EtOAc}-\mathrm{hexane}\right.$ gradient elution) afforded $4(2.59 \mathrm{~g}, 2.66 \mathrm{~g}$ theoretical, $97 \%)$ as a clear, paleyellow oil: $[\alpha]^{25} \mathrm{D}+48\left(c 0.65, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta 7.27-7.36(\mathrm{~m}, 5 \mathrm{H}, \mathrm{PhH}), 6.72\left(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{C}^{5}-\mathrm{H}\right), 6.67(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=2.0 \mathrm{~Hz}, \mathrm{C}^{2}-\mathrm{H}\right), 6.56\left(\mathrm{dd}, 1 \mathrm{H}, J=2.0,8.2 \mathrm{~Hz}, \mathrm{C}^{6}-\mathrm{H}\right), 5.74(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{OH}), 5.29(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{NH}), 5.09\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.61$ (dd, $1 \mathrm{H}, \mathrm{J}=5.8,8.1 \mathrm{~Hz}, \mathrm{CHCH}_{2}$), $3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 3.71(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CO}_{2} \mathrm{CH}_{3}$), 2.90-3.05 (m, 2H, CHCH $)_{2}$; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right.$) $\delta 172.0,155.6,145.7,145.6,136.7,128.6,128.4,128.04,127.98,120.6$, $115.4,110.7,66.9,55.7,54.8,52.2,37.4$; IR (neat) $\nu_{\max } 3333,2940$, $2842,1734,1709,1592,1514,1443,1343,1273,1208,1126,1049,1020$, $908,761,732 \mathrm{~cm}^{-1}$; FABHRMS (NBA/CsI) m/e $492.0431\left(\mathrm{M}^{+}+\mathrm{Cs}\right.$, $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{6}$ requires 492.0423). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{6}$: $\mathrm{C}, 63.51$; H, 5.85; N, 3.90. Found: C, 63.60; H, 5.62; N, 4.08.

3-Hydroxy-O-methyl-L-tyrosine Methyl Ester (5). A solution of 4 $(2.59 \mathrm{~g}, 7.2 \mathrm{mmol})$ in dry $\mathrm{CH}_{3} \mathrm{OH}(40 \mathrm{~mL})$ was treated with $10 \% \mathrm{Pd} / \mathrm{C}$ ($260 \mathrm{mg}, 10 \% \mathrm{wt}$ equiv) and stirred under an atmosphere of H_{2} (1 atm) at $25^{\circ} \mathrm{C}$ for 10 h . The reaction mixture was filtered through Celite $\left(\mathrm{CH}_{3} \mathrm{OH}\right.$ wash), concentrated in vacuo, and dried thoroughly under vacuum to afford $5(1.60 \mathrm{~g}, 1.62 \mathrm{~g}$ theoretical, $99 \%)$ as a pale-blue solid: mp $78-79{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}-11.6\left(c 0.25, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta 6.77\left(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{C}^{5}-\mathrm{H}\right), 6.74\left(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{C}^{2}-\mathrm{H}\right)$, $6.65\left(\mathrm{dd}, 1 \mathrm{H}, J=2.0,8.2 \mathrm{~Hz}, \mathrm{C}^{6}-\mathrm{H}\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 3.71(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}$), 3.68 (dd, $1 \mathrm{H}, J=5.0,7.9 \mathrm{~Hz}, \mathrm{CHCH}_{2}$), 2.99 (dd, 1 H , $J=5.0,13.6 \mathrm{~Hz}, \mathrm{CHCHH}), 2.75(\mathrm{dd}, 1 \mathrm{H}, J=7.9,13.6 \mathrm{~Hz}, \mathrm{CHCH} H)$, 2.30-2.60 (br s, 3H, NH2 and OH); $\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl} 3,100 \mathrm{MHz}\right) \delta$ 175.4, 145.71, 145.67, 130.1, 120.7, 115.5, 110.8, 55.9, 55.8, 52.0, 40.3; IR (KBr) $\nu_{\text {max }} 3370,3301,2953,2828,1730,1582,1509,1440,1375$, $1320,1286,1221,1206,1165,1131,1028,994,932,877,812,785,759$, $652 \mathrm{~cm}^{-1}$; FABHRMS (NBA/NaI) m/e $248.0899\left(\mathrm{M}^{+}+\mathrm{Na}, \mathrm{C}_{11} \mathrm{H}_{15}-\right.$ NO_{4} requires 248.0899).

3-Hydroxy-O-methyl- N -[4-iodo- N -[(1,1-dimethylethoxy) carbonyl]-L-phenylalanyl)-L-tyrosine Methyl Ester (7). A solution of $5(1.35 \mathrm{~g}, 6.0$ mmol) in dry DMF (5 mL) was added to a solution of $6^{34}(2.35 \mathrm{~g}, 6.0$ mmol, 1.0 equiv), $\mathrm{EDCI}(1.50 \mathrm{~g}, 7.8 \mathrm{mmol}, 1.3$ equiv), and $\mathrm{HOBt}(1.05$ $\mathrm{g}, 7.8 \mathrm{mmol}, 1.3$ equiv) in DMF (15 mL) at $0^{\circ} \mathrm{C}$ under Ar. The resulting reaction solution was allowed to warm to $25^{\circ} \mathrm{C}$ and stirred for 16 h . The reaction mixture was poured into 10% aqueous $\mathrm{HCl}(20 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined EtOAc extracts were washed with 10% aqueous $\mathrm{HCl}(2 \times 10 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, saturated acqueous $\mathrm{NaHCO}_{3}(2 \times 10 \mathrm{~mL})$, and saturated aqueous $\mathrm{NaCl}(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. Flash chromatography $\left(\mathrm{SiO}_{2}, 3\right.$ $\times 25 \mathrm{~cm}, 10-30 \%$ EtOAc-hexane gradient elution) afforded $7(3.39 \mathrm{~g}$, 3.59 g theoretical, 95%) as a white solid: mp $170-171^{\circ} \mathrm{C}(80 \%$ EtOAchexane, white powder); $[\alpha]^{25}{ }_{\mathrm{D}}+36\left(c 1.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 7.56\left(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{C}^{3}-\right.$ and $\left.\mathrm{C}^{s^{\prime}}-\mathrm{H}\right), 6.90(\mathrm{~d}, 2 \mathrm{H}, J$ $=8.2 \mathrm{~Hz}, \mathrm{C}^{2}-$ and $\left.\mathrm{C}^{6}-\mathrm{H}\right), 6.69\left(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{C}^{5}-\mathrm{H}\right), 6.57(\mathrm{~d}$, $\left.1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{C}^{2}-\mathrm{H}\right), 6.44\left(\mathrm{dd}, 1 \mathrm{H}, J=2.08 .2 \mathrm{~Hz}, \mathrm{C}^{6}-\mathrm{H}\right), 6.35(\mathrm{~d}$, $1 \mathrm{H}, J=6.4 \mathrm{~Hz}$, NHCO), 5.92 (br s, $1 \mathrm{H}, \mathrm{OH}$), $5.07(\mathrm{~d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}$, NHBOC $), 4.68-4.72\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right), 4.28-4.32\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right)$, $3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 2.96(\mathrm{dt}, 2 \mathrm{H}, J=5.9$, $\left.14.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ar}\right), 2.93\left(\mathrm{dt}, 2 \mathrm{H}, J=5.7,13.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ar}\right), 1.39(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 171.3,170.5,155.3$, $145.9,145.6,137.5,136.1,131.3,128.4,120.6,115.6,110.7,92.3,80.3$, $55.8,55.3,53.3,52.4,37.8,37.0,28.2$; IR (KBr) $\nu_{\max } 3504,3334,3297$, $2977,2931,1736,1683,1664,1513,1438,1365,1298,1270,1249,1172$, $1131,1024,1007,965,895,841,801,762,623 \mathrm{~cm}^{-1}$; FABHRMS (NBA/ $\mathrm{CsI}) m / e 731.0237\left(\mathrm{M}^{+}+\mathrm{Cs}, \mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{I}\right.$ requires 731.0230). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{I}: \mathrm{C}, 50.17 ; \mathrm{H}, 5.18 ; \mathrm{N}, 4.68$. Found: C, 50.37; H, 5.26; N, 5.05.
cyclo-(4-Iodo-L-phenylalanyl)-3-hydroxy-4-O-methyl-L-tyrosine (9). A solution of $7(2.30 \mathrm{~g}, 3.85 \mathrm{mmol})$ in $3.25 \mathrm{M} \mathrm{HCl}-\mathrm{EtOAc}(30 \mathrm{~mL})$ was stirred at $0^{\circ} \mathrm{C}$ for 10 min and allowed to warm to $25^{\circ} \mathrm{C}$ over 30 min . The volatiles were removed in vacuo and the residue was dried thoroughly under vacuum to afford the corresponding amine hydrochloride salt 8 ($2.06 \mathrm{~g}, 2.06 \mathrm{~g}$ theoretical, 100%) as a white solid. A suspension of the hydrochloride salt $8(2.06 \mathrm{~g}, 3.85 \mathrm{mmol})$ in $0.1 \mathrm{M} \mathrm{HOAc-iPrOH}$ (20 mL) was treated with N-methylmorpholine (NMM, $505 \mathrm{mg}, 0.55 \mathrm{~mL}$,
$5.0 \mathrm{mmol}, 1.3$ equiv) at $25^{\circ} \mathrm{C}$, and the resulting weakly acidic reaction mixture was warmed at reflux for 2 h . The diketopiperazine began to crystallize from the hot reaction solution. The mixture was cooled at 0 ${ }^{\circ} \mathrm{C}(4 \mathrm{~h})$ and filtered, and the collected product was washed with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 20 \mathrm{~mL}$). Recrystallization from 2-propanol afforded $9(1.69 \mathrm{~g}, 1.79$ g theoretical, 94%) as a white solid: $\mathrm{mp} 281-283^{\circ} \mathrm{C} \mathrm{dec}$ (2-propanol, white powder); $[\alpha]^{25} \mathrm{D}-203\left(c 0.05, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400$ $\mathrm{MHz}) \delta 8.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.95(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}, \mathrm{NH}), 7.90(\mathrm{~d}, 1 \mathrm{H}$, $J=2.2 \mathrm{~Hz}, \mathrm{NH}), 7.63\left(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{C}^{3}-\right.$ and $\left.\mathrm{C}^{\prime}-\mathrm{H}\right), 6.86(\mathrm{~d}$, $\left.1 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{C}^{5}-\mathrm{H}\right), 6.83\left(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{C}^{2}-\right.$ and $\left.\mathrm{C}^{6}-\mathrm{H}\right), 6.58$ (d, $\left.1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{C}^{2}-\mathrm{H}\right), 6.47\left(\mathrm{dd}, 1 \mathrm{H}, J=2.0,8.3 \mathrm{~Hz}, \mathrm{C}^{6}-\mathrm{H}\right.$), 3.94-3.98 (m, $1 \mathrm{H}, \mathrm{CHCH} 2), 3.86-3.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right) 3.71(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{ArOCH}_{3}\right), 2.58(\mathrm{dd}, 1 \mathrm{H}, J=4.6,13.6 \mathrm{~Hz}, \mathrm{CHCHH}), 2.48(\mathrm{dd}, 1 \mathrm{H}, J$ $=5.0,13.6 \mathrm{~Hz}, \mathrm{CHCH} H), 2.37(\mathrm{dd}, 1 \mathrm{H}, J=5.6,13.6 \mathrm{~Hz}, \mathrm{CHCHH})$, $2.01(\mathrm{dd}, 1 \mathrm{H}, J=7.0,13.6 \mathrm{~Hz}, \mathrm{CHCH} H) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 100$ $\mathrm{MHz}) \delta 166.3,166.1,146.6,146.4,136.9,136.7,132.2,128.9,120.7$, $117.5,112.3,92.5,55.8,55.7,55.3,38.6$; IR (KBr) $\nu_{\max } 3427,3209$, 2989, 2831, 1672, 1585, 1513, 1461, 1400, 1328, 1267, 1128, 1005, 969, 805, 764, $662 \mathrm{~cm}^{-1}$; FABHRMS (NBA/CsI) m/e $598.9444\left(\mathrm{M}^{+}+\mathrm{Cs}\right.$, $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{I}$ requires 598.9444). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{I}$: C , 48.93; H, 4.08; N, 6.01. Found: C, 49.02; H, 4.34; N, 5.63.
(3S,6S)-11-Methoxy-5,21-dioxo-13-oxa-4,20-diazatetracyclo[12.2.2.23.6. $1^{8,12}$]heniecosa-8,10,12(19),14,16,17-hexaene (10). A solution of $9(466 \mathrm{mg}, 1.0 \mathrm{mmol})$ in dry DMF (5 mL) was added dropwise to a $0^{\circ} \mathrm{C}$ suspension of $\mathrm{NaH}(60 \%$ dispersion in mineral oil, $160 \mathrm{mg}, 4.0$ mmol, 4.0 equiv) in dry DMF (2 mL) under Ar, and the solution was allowed to stir for 20 min at $0^{\circ} \mathrm{C}$. The solution was treated with $\mathrm{CuBr}-$ $\mathrm{SMe}_{2}(2.06 \mathrm{~g}, 10.0 \mathrm{mmol}, 10.0$ equiv) and allowed to stir for 1 h at 25 ${ }^{\circ} \mathrm{C}$. The mixture was diluted with additional dry, degassed DMF to $0.004 \mathrm{M}(243 \mathrm{~mL})$ and warmed at $170^{\circ} \mathrm{C}$ (bath temperature) for 48 h . The cooled reaction mixture was concentrated in vacuo, and the residue was treated with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$-concentrated $\mathrm{NH}_{4} \mathrm{OH}(9: 1$, 40 mL) and $10 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{CHCl}_{3}(40 \mathrm{~mL})$. The mixture was stirred for 30 min at $25^{\circ} \mathrm{C}$ before the two layers were separated and the aqueous phase was extracted with $10 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{CHCl}_{3}(5 \times 40 \mathrm{~mL}$). The combined organic extracts were washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ ($2 \times 20 \mathrm{~mL}$), $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, and saturated aqueous $\mathrm{NaCl}(2 \times 30 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. Flash chromatography $\left(\mathrm{SiO}_{2}\right.$, $3 \times 10 \mathrm{~cm}, 2-10 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{CHCl}_{3}$ gradient elution) afforded 10 (180 $\mathrm{mg}, 338 \mathrm{mg}$ theoretical, 53%) as a white solid: $\mathrm{mp} 284-286{ }^{\circ} \mathrm{C} \mathrm{dec} \mathrm{(} 95 \%$ EtOH- $\mathrm{H}_{2} \mathrm{O}$, white powder); $[\alpha]^{25} \mathrm{D}+182\left(c 0.05, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 400 \mathrm{MHz}\right) \delta 8.11\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{N}^{4}-\mathrm{H}\right), 7.92\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{N}^{20}-\mathrm{H}\right)$, 7.46 (dd, $\left.1 \mathrm{H}, J=2.1,8.4 \mathrm{~Hz}, \mathrm{C}^{16}-\mathrm{H}\right), 7.23$ (dd, $1 \mathrm{H}, J=2.1,8.4 \mathrm{~Hz}$, $\left.\mathrm{C}^{17}-\mathrm{H}\right), 7.04\left(\mathrm{dd}, 1 \mathrm{H}, J=2.4,8.3 \mathrm{~Hz}, \mathrm{C}^{15}-\mathrm{H}\right), 6.91(\mathrm{dd}, 1 \mathrm{H}, J=2.4$, $\left.8.4 \mathrm{~Hz}, \mathrm{C}^{18}-\mathrm{H}\right), 6.88\left(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{C}^{10}-\mathrm{H}\right), 6.55(\mathrm{dd}, 1 \mathrm{H}, J=2.1$, $\left.8.3 \mathrm{~Hz}, \mathrm{C}^{9}-\mathrm{H}\right), 4.25-4.28\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}^{3}-\mathrm{H}\right), 4.15-4.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}^{6}-\mathrm{H}\right)$, $4.13\left(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}, \mathrm{C}^{19}-\mathrm{H}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 3.49(\mathrm{dd}, 1 \mathrm{H}$, $\left.J=2.3,12.8 \mathrm{~Hz}, \mathrm{C}^{2}-\mathrm{H}_{\beta}\right), 3.07\left(\mathrm{dd}, 1 \mathrm{H}, J=3.2,17.7 \mathrm{~Hz}, \mathrm{C}^{7}-\mathrm{H}_{\beta}\right), 2.89$ (dd, $\left.1 \mathrm{H}, J=4.7,12.8 \mathrm{~Hz}, \mathrm{C}^{2}-\mathrm{H}_{\alpha}\right), 2.74(\mathrm{dd}, 1 \mathrm{H}, J=4.7,17.7 \mathrm{~Hz}$, $\mathrm{C}^{7}-\mathrm{H}_{\alpha}$); ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 100 \mathrm{MHz}$) $\delta 167.3,166.2,157.9,152.2$, $145.1,133.6,133.1,131.9,129.2,124.1,123.2,121.6,114.8,112.6,56.2$, $55.8,51.7,36.7,31.1$; IR (KBr) $\nu_{\max } 3443,3204,3075,2966,2897,1671$, $1585,1517,1500,1438,1325,1265,1216,1127,1024,965,933,830$, $807,746,713 \mathrm{~cm}^{-1}$; FABHRMS (NBA) m/e $338.1281\left(\mathrm{M}^{+}, \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}\right.$ requires 338.1267).

The 2D ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY NMR spectrum of 10 (DMSO- $d_{6}, 400 \mathrm{MHz}$) displayed diagnostic NOE crosspeaks for $\mathrm{N}^{4}-\mathrm{H} / \mathrm{C}^{3}-\mathrm{H}, \mathrm{N}^{4}-\mathrm{H} / \mathrm{C}^{2}-\mathrm{H}_{\alpha}$, $\mathrm{N}^{4}-\mathrm{H} / \mathrm{C}^{16}-\mathrm{H}, \mathrm{N}^{20}-\mathrm{H} / \mathrm{C}^{6}-\mathrm{H}, \mathrm{N}^{20}-\mathrm{H} / \mathrm{C}^{7}-\mathrm{H}_{\theta}, \mathrm{C}^{16}-\mathrm{H} / \mathrm{C}^{15}-\mathrm{H}, \mathrm{C}^{16}-\mathrm{H} /$ $\mathrm{C}^{2}-\mathrm{H}_{\alpha}, \mathrm{C}^{17}-\mathrm{H} / \mathrm{C}^{18}-\mathrm{H}, \mathrm{C}^{17}-\mathrm{H} / \mathrm{C}^{2}-\mathrm{H}_{\beta}, \mathrm{C}^{10}-\mathrm{H} / \mathrm{C}^{9}-\mathrm{H}, \mathrm{C}^{10}-\mathrm{H} / \mathrm{C}^{11}-\mathrm{OCH}_{3}$, $\mathrm{C}^{3}-\mathrm{H} / \mathrm{C}^{2}-\mathrm{H}_{\beta}, \mathrm{C}^{3}-\mathrm{H} / \mathrm{C}^{2}-\mathrm{H}_{\alpha}, \mathrm{C}^{6}-\mathrm{H} / \mathrm{C}^{7}-\mathrm{H}_{\beta}, \mathrm{C}^{6}-\mathrm{H} / \mathrm{C}^{7}-\mathrm{H}_{\alpha}, \mathrm{C}^{2}-\mathrm{H}_{\alpha} / \mathrm{C}^{2}-$ $\mathrm{H}_{\beta}, \mathrm{C}^{7}-\mathrm{H}_{\alpha} / \mathrm{C}^{7}-\mathrm{H}_{\beta}$.

Chiral-phase HPLC analysis of 10 revealed a single peak ($t_{\mathrm{R}} 8.1 \mathrm{~min}$; $1 \mathrm{~mL} / \mathrm{min}, 2 \% i \mathrm{PrOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ elution, $258-\mathrm{nm}$ detection).
(3S,6S)-5,21-Diox0-13-0xa-4,20-diazatetracyclo[12.2.2.23,6.18,12]-heniecosa-8,10,12(19),14,16,17-hexaen-11-ol (11a). A solution of 10 $(6.8 \mathrm{mg}, 0.02 \mathrm{mmol})$ in $\mathrm{HOAc}(0.5 \mathrm{~mL})$ was treated with $\mathrm{HBr}(48 \%, 0.1$ mL) at $25^{\circ} \mathrm{C}$, and the resulting reaction solution was warmed at reflux for 40 min . The volatiles were removed in vacuo, and the residue was treated with saturated aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$. The aqueous phase was extracted with $10 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{CHCl}_{3}(6 \times 5 \mathrm{~mL})$. The combined extracts were washed with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and saturated aqueous NaCl (5 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. Flash chromatography ($\mathrm{SiO}_{2}, 1.5 \times 3 \mathrm{~cm}, 5-10 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{CHCl}_{3}$ gradient elution) afforded $11 \mathrm{a}\left(5.5 \mathrm{mg}, 6.5 \mathrm{mg}\right.$ theoretical, 85%) as a white solid: $\mathrm{mp} 294-296^{\circ} \mathrm{C}$ dec ($95 \% \mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$, white powder); $[\alpha]^{25} \mathrm{D}+125$ (c 0.25 , pyridine); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 7.33\left(\mathrm{dd}, 1 \mathrm{H}, J=2.2,8.3 \mathrm{~Hz}, \mathrm{C}^{16}-\mathrm{H}\right)$,
$7.29\left(\mathrm{dd}, 1 \mathrm{H}, J=2.2,8.3 \mathrm{~Hz}, \mathrm{C}^{17}-\mathrm{H}\right), 7.06(\mathrm{dd}, 1 \mathrm{H}, J=2.2,8.3 \mathrm{~Hz}$, $\left.\mathrm{C}^{15}-\mathrm{H}\right), 6.91\left(\mathrm{dd}, 1 \mathrm{H}, J=2.2,8.3 \mathrm{~Hz}, \mathrm{C}^{18}-\mathrm{H}\right), 6.65(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}$, $\left.\mathrm{C}^{10}-\mathrm{H}\right), 6.45\left(\mathrm{dd}, 1 \mathrm{H}, J=2.2,8.2 \mathrm{~Hz}, \mathrm{C}^{9}-\mathrm{H}\right), 4.35-4.37\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}^{3}-\mathrm{H}\right)$, 4.24-4.27 (m, 1H, C $\left.{ }^{6}-\mathrm{H}\right), 4.21\left(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}, \mathrm{C}^{19}-\mathrm{H}\right), 3.53(\mathrm{dd}$, $\left.1 \mathrm{H}, J=2.4,13.3 \mathrm{~Hz}, \mathrm{C}^{2}-\mathrm{H}_{\beta}\right), 3.24\left(\mathrm{dd}, 1 \mathrm{H}, J=3.0,17.6 \mathrm{~Hz}, \mathrm{C}^{7}-\mathrm{H}_{\beta}\right)$, $2.94\left(\mathrm{dd}, 1 \mathrm{H}, J=4.8,13.3 \mathrm{~Hz}, \mathrm{C}^{2}-\mathrm{H}_{\alpha}\right), 2.79(\mathrm{dd}, 1 \mathrm{H}, J=4.8,17.6 \mathrm{~Hz}$, $\left.\mathrm{C}^{7}-\mathrm{H}_{\alpha}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta 170.1,169.2,160.6,152.8$, 144.1, 134.2, 133.9, 133.1, 128.4, 125.9, 124.9, 123.3, 117.2, 116.3, 58.1, $53.8,38.3,32.6$; IR (KBr) $\nu_{\max } 3422,3214,3102,2964,2929,1670$, $1517,1437,1324,1265,1213,1117,1024,964,932,854,744,708 \mathrm{~cm}^{-1}$; FABHRMS (NBA) m/e $325.1188\left(\mathrm{M}^{+}+\mathrm{H}, \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}\right.$ requires 325.1188).
(3S,6S)-11-Acetoxy-5,21-diox0-13-0xa-4,20-diazatetracyclo[12.2.2.2 $\left.{ }^{3,6} \cdot 1^{8,12}\right]$ heniecosa-8,10,12(19),14,16,17-hexaene (11b). A solution of $11 \mathrm{a}(5.5 \mathrm{mg}, 0.017 \mathrm{mmol})$ in dry pyridine $(0.5 \mathrm{~mL})$ was treated with $\mathrm{Ac}_{2} \mathrm{O}$ ($87 \mathrm{mg}, 80 \mu \mathrm{~L}, 0.85 \mathrm{mmol}, 50$ equiv) at $25^{\circ} \mathrm{C}$ under Ar. The resulting reaction solution was stirred for 4 h at $25^{\circ} \mathrm{C}$. The volatiles were removed in vacuo, and the residue was purified by flash chromatography ($\mathrm{SiO}_{2}, 1.5 \times 2 \mathrm{~cm}, 2-10 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{CHCl}_{3}$ gradient elution) to afford 11 b ($5.8 \mathrm{mg}, 6.2 \mathrm{mg}$ theoretical, 93%) as a white solid: mp $292-294^{\circ} \mathrm{C}$ dec (EtOH, white powder); $[\alpha]^{25}{ }_{\mathrm{D}}+188$ (c0.15, pyridine), $\left[\right.$ lit ${ }^{30}[\alpha]{ }^{20} \mathrm{D}+190(c 0.19$, pyridine $\left.)\right]$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta$ 7.25 (dd, $1 \mathrm{H}, J=2.2,8.3 \mathrm{~Hz}, \mathrm{C}^{16}-\mathrm{H}$), 7.22 (dd, $1 \mathrm{H}, J=2.1,8.3 \mathrm{~Hz}$, $\left.\mathrm{C}^{17}-\mathrm{H}\right), 6.97\left(\mathrm{dd}, 1 \mathrm{H}, J=2.2,8.3 \mathrm{~Hz}, \mathrm{C}^{15}-\mathrm{H}\right), 6.84(\mathrm{dd}, 1 \mathrm{H}, J=2.2$, $\left.8.3 \mathrm{~Hz}, \mathrm{C}^{18}-\mathrm{H}\right), 6.78\left(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{C}^{10}-\mathrm{H}\right), 6.55(\mathrm{dd}, 1 \mathrm{H}, J=2.0$, $\left.8.2 \mathrm{~Hz}, \mathrm{C}^{9}-\mathrm{H}\right), 4.28-4.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}^{3}-\mathrm{H}\right), 4.26(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}$, $\left.\mathrm{C}^{19}-\mathrm{H}\right), 4.21-4.24\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}^{6}-\mathrm{H}\right), 3.46(\mathrm{dd}, 1 \mathrm{H}, J=2.3,13.2 \mathrm{~Hz}$, $\left.\mathrm{C}^{2}-\mathrm{H}_{\beta}\right), 3.24\left(\mathrm{dd}, 1 \mathrm{H}, J=3.0,17.6 \mathrm{~Hz}, \mathrm{C}^{7}-\mathrm{H}_{\beta}\right), 2.87(\mathrm{dd}, 1 \mathrm{H}, J=4.6$, $13.2 \mathrm{~Hz}, \mathrm{C}^{2}-\mathrm{H}_{\alpha}$), $2.79\left(\mathrm{dd}, 1 \mathrm{H}, J=4.6,17.6 \mathrm{~Hz}, \mathrm{C}^{7}-\mathrm{H}_{\alpha}\right), 2.23(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCOCH}_{3}\right) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta 170.7,170.1,169.0,160.2$, $156.0,137.9,136.0,134.8,134.1,133.2,125.6,124.7,123.5,123.3,117.1$, 58.1, 53.6, 38.4, 32.9, 20.5; IR (KBr) $\nu_{\max } 3448,3226,2926,2855,1758$, $1671,1591,1500,1427,1322,1247,1195,1113,1014,967,932,906$, $855,753,730,644 \mathrm{~cm}^{-1}$; FABHRMS (NBA) $m / e 367.1299\left(\mathrm{M}^{+}+\mathrm{H}\right.$, $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires 367.1294).
(3S,6S)-11-Methoxy-13-oxa-4,20-diazatetracyelo[12.2.2.23,6.18,12]-heniecosa-8,10,12(19),14,16,17-hexaene (13). A well-stirred suspension of $10(33.8 \mathrm{mg}, 0.1 \mathrm{mmol})$ in dry THF (1.0 mL) was treated with 1 M $\mathrm{BH}_{3}-$ THF ($3 \mathrm{~mL}, 3 \mathrm{mmol}, 15$ equiv) at $25^{\circ} \mathrm{C}$ under Ar. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h and warmed to $45-50^{\circ} \mathrm{C}$ for 72 h . The volatiles were removed in vacuo, and the residue was treated with 2 N aqueous $\mathrm{HCl}(2 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ for 30 min . The clear acidic solution was neutralized with the addition of 6 N aqueous $\mathrm{NaOH}(0.8 \mathrm{~mL})$, and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 20 min . The mixture was extracted with $10 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{CHCl}_{3}(8 \times 5 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaCl}(2 \times$ $5 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. Flash chromatography $\left(\mathrm{SiO}_{2}, 1.5 \times 5 \mathrm{~cm}, 0-15 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{CHCl}_{3}\right.$ gradient elution) afforded 13 ($13.2 \mathrm{mg}, 31.0 \mathrm{mg}$ theoretical, 43%) and a monoreduced product 12 ($13.9 \mathrm{mg}, 43 \%$). The monoreduced product 12 was recycled through the reduction reaction conditions a second time (70% conversion) to provide 13 (73% overall). For 13: white solid, $\mathrm{mp} 89-91^{\circ} \mathrm{C}\left(95 \% \mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}\right.$, white powder); $[\alpha]^{25}{ }_{\mathrm{D}}-43\left(c 0.23, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400\right.$ $\mathrm{MHz}) \delta 7.53\left(\mathrm{dd}, 1 \mathrm{H}, J=2.2,8.4 \mathrm{~Hz}, \mathrm{C}^{17}-\mathrm{H}\right), 7.50(\mathrm{dd}, 1 \mathrm{H}, J=2.2$, $\left.8.4 \mathrm{~Hz}, \mathrm{C}^{16}-\mathrm{H}\right), 7.10\left(\mathrm{dd}, 1 \mathrm{H}, J=2.4,8.3 \mathrm{~Hz}, \mathrm{C}^{18}-\mathrm{H}\right), 6.92(\mathrm{dd}, 1 \mathrm{H}$, $\left.J=2.4,8.3 \mathrm{~Hz}, \mathrm{C}^{15}-\mathrm{H}\right), 6.77\left(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{C}^{10}-\mathrm{H}\right), 6.49(\mathrm{dd}, 1 \mathrm{H}$, $\left.J=2.2,8.3 \mathrm{~Hz}, \mathrm{C}^{9}-\mathrm{H}\right), 5.89\left(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}, \mathrm{C}^{19}-\mathrm{H}\right), 3.86(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{ArOCH}_{3}\right), 3.40\left(\mathrm{~d}, 1 \mathrm{H}, J=13.4 \mathrm{~Hz}, \mathrm{C}^{21}-\mathrm{H}_{\beta}\right), 3.04-3.23\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}^{2}-\right.$ $\left.\mathrm{H}_{\alpha}, \mathrm{C}^{2}-\mathrm{H}_{\beta}, \mathrm{C}^{3}-\mathrm{H}_{\alpha}, \mathrm{C}^{21}-\mathrm{H}_{\alpha}\right), 2.87\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}^{6}-\mathrm{H}_{\alpha}\right), 2.76(\mathrm{dd}, 1 \mathrm{H}, J=$ $\left.4.2,17.0 \mathrm{~Hz}, \mathrm{C}^{7}-\mathrm{H}_{\beta}\right), 2.56\left(\mathrm{t}, 1 \mathrm{H}, J=12.2 \mathrm{~Hz}, \mathrm{C}^{5}-\mathrm{H}_{\beta}\right), 2.53(\mathrm{dd}, 1 \mathrm{H}$, $\left.J=3.2,17.0 \mathrm{~Hz}, \mathrm{C}^{7}-\mathrm{H}_{\alpha}\right), 2.32\left(\mathrm{dd}, 1 \mathrm{H}, J=2.8,12.2 \mathrm{~Hz}, \mathrm{C}^{5}-\mathrm{H}_{\alpha}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta 162.7,153.9,148.1,137.8,133.3,132.6$, 131.0, 126.4, 125.7, 124.1, 121.9, 114.0, 56.9, 55.0, 50.6, 49.6, 45.5, 41.8, 36.7; IR (KBr) $\nu_{\max } 3445,2927,2851,1605,1516,1457,1430,1384$, $1262,1196,1127,1025,996,840,808,751,720,686 \mathrm{~cm}^{-1} ;$ FABHRMS (NBA) $m / e 311.1766\left(\mathrm{M}^{+}+\mathrm{H}, \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}\right.$ requires 311.1760$)$.

The 2D ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY NMR spectrum of $13\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$ displayed diagnostic NOE crosspeaks for $\mathrm{C}^{17}-\mathrm{H} / \mathrm{C}^{18}-\mathrm{H}, \mathrm{C}^{17}-\mathrm{H} / \mathrm{C}^{21}-$
$\mathrm{H}_{\beta}, \mathrm{C}^{17}-\mathrm{H} / \mathrm{C}^{2}-\mathrm{H}_{\beta}, \mathrm{C}^{16}-\mathrm{H} / \mathrm{C}^{15}-\mathrm{H}, \mathrm{C}^{16}-\mathrm{H} / \mathrm{C}^{2}-\mathrm{H}_{\alpha}, \mathrm{C}^{18}-\mathrm{H} / \mathrm{C}^{19}-\mathrm{H}, \mathrm{C}^{10}-$ $\mathrm{H} / \mathrm{C}^{9}-\mathrm{H}, \mathrm{C}^{10}-\mathrm{H} / \mathrm{C}^{11}-\mathrm{OCH}_{3}, \mathrm{C}^{9}-\mathrm{H} / \mathrm{C}^{7}-\mathrm{H}_{\alpha}, \mathrm{C}^{19}-\mathrm{H} / \mathrm{C}^{5}-\mathrm{H}_{\beta}, \mathrm{C}^{21}-\mathrm{H}_{\beta} /$ $\mathrm{C}^{21}-\mathrm{H}_{\alpha}, \mathrm{C}^{21}-\mathrm{H}_{\beta} / \mathrm{C}^{3}-\mathrm{H}_{\alpha}, \mathrm{C}^{21}-\mathrm{H}_{\alpha} / \mathrm{C}^{6}-\mathrm{H}_{\alpha}, \mathrm{C}^{21}-\mathrm{H}_{\alpha} / \mathrm{C}^{3}-\mathrm{H}_{\alpha}, \mathrm{C}^{3}-\mathrm{H}_{\alpha} / \mathrm{C}^{2}-$ $\mathrm{H}_{\beta}, \mathrm{C}^{3}-\mathrm{H}_{\alpha} / \mathrm{C}^{2}-\mathrm{H}_{\alpha}, \mathrm{C}^{2}-\mathrm{H}_{\alpha} / \mathrm{C}^{2}-\mathrm{H}_{\beta}, \mathrm{C}^{6}-\mathrm{H}_{\alpha} / \mathrm{C}^{5}-\mathrm{H}_{\alpha}, \mathrm{C}^{6}-\mathrm{H}_{\alpha} / \mathrm{C}^{5}-\mathrm{H}_{\beta}, \mathrm{C}^{6}-$ $\mathrm{H}_{\alpha} / \mathrm{C}^{7}-\mathrm{H}_{\alpha}, \mathrm{C}^{6}-\mathrm{H}_{\alpha} / \mathrm{C}^{7}-\mathrm{H}_{\beta}, \mathrm{C}^{7}-\mathrm{H}_{\beta} / \mathrm{C}^{7}-\mathrm{H}_{\alpha}, \mathrm{C}^{5}-\mathrm{H}_{\beta} / \mathrm{C}^{5}-\mathrm{H}_{\alpha}$.

For 12: white solid, $\mathrm{mp} 279-281^{\circ} \mathrm{C} \operatorname{dec}\left(\mathrm{CH}_{3} \mathrm{OH}\right.$, white powder); $[\alpha]^{2 S_{\mathrm{D}}}+278\left(c 0.23, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta 7.58$ (br s, $1 \mathrm{H}, \mathrm{N}^{4}-\mathrm{H}$), 7.55 (dd, $1 \mathrm{H}, J=2.1,8.3 \mathrm{~Hz}, \mathrm{C}^{17}-\mathrm{H}$), 7.38 (dd, 1 H , $\left.J=2.1,8.3 \mathrm{~Hz}, \mathrm{C}^{16}-\mathrm{H}\right), 7.06\left(\mathrm{dd}, 1 \mathrm{H}, J=2.1,8.2 \mathrm{~Hz}, \mathrm{C}^{15}-\mathrm{H}\right), 6.91$ (dd, $\left.1 \mathrm{H}, J=2.1,8.2 \mathrm{~Hz}, \mathrm{C}^{18}-\mathrm{H}\right), 6.83\left(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{C}^{10}-\mathrm{H}\right), 6.52$ (dd, $\left.1 \mathrm{H}, J=2.1,8.2 \mathrm{~Hz}, \mathrm{C}^{9}-\mathrm{H}\right), 4.74\left(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}, \mathrm{C}^{19}-\mathrm{H}\right), 3.80$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 3.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}^{3}-\mathrm{H}_{\alpha}\right), 3.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N}^{20}-\mathrm{H}\right.$, partially obscured by $\mathrm{H}_{2} \mathrm{O}$), 3.25 (dd, $1 \mathrm{H}, J=4.4,17.6 \mathrm{~Hz}, \mathrm{C}^{7}-\mathrm{H}_{8}$), 3.19 (dd, $\left.1 \mathrm{H}, J=1.2,16.8 \mathrm{~Hz}, \mathrm{C}^{21}-\mathrm{H}_{\beta}\right), 3.14\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}^{6}-\mathrm{H}_{\alpha}\right), 3.04(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{C}^{21}-\mathrm{H}_{\alpha}\right), 2.92\left(\mathrm{dd}, 1 \mathrm{H}, J=4.9,13.2 \mathrm{~Hz}, \mathrm{C}^{2}-\mathrm{H}_{\alpha}\right), 2.84(\mathrm{dd}, 1 \mathrm{H}, J=1.2$, $\left.12.8 \mathrm{~Hz}, \mathrm{C}^{2}-\mathrm{H}_{\beta}\right), 2.52\left(\mathrm{dd}, 1 \mathrm{H}, J=4.6,16.8 \mathrm{~Hz}, \mathrm{C}^{7}-\mathrm{H}_{\alpha}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d $\delta_{6}, 100 \mathrm{MHz}$) $\delta 170.6,158.6,152.1,145.2,135.2,132.5,131.4$, $130.1,124.2,123.7,121.5,117.2,112.6,56.5,55.9,50.5,46.5,40.7,31.5 ;$ IR (KBr) $\nu_{\max } 3431,2933,2830,1660,1587,1518,1499,1267,1206$, 1131, 1027, $967,837,793,727,704 \mathrm{~cm}^{-1}$; FABHRMS (NBA) m / e $325.1552\left(\mathrm{M}^{+}+\mathrm{H}, \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}\right.$ requires 325.1552).

The 2D ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY NMR spectrum of 12 (DMSO- $d_{6}, 400 \mathrm{MHz}$) displayed diagnostic NOE crosspeaks for $\mathrm{N}^{4}-\mathrm{H} / \mathrm{C}^{16}-\mathrm{H}, \mathrm{N}^{4}-\mathrm{H} / \mathrm{C}^{3}-\mathrm{H}_{\alpha}$, $\mathrm{N}^{4}-\mathrm{H} / \mathrm{C}^{2}-\mathrm{H}_{\alpha}, \mathrm{C}^{17}-\mathrm{H} / \mathrm{C}^{18}-\mathrm{H}, \mathrm{C}^{17}-\mathrm{H} / \mathrm{C}^{21}-\mathrm{H}_{\beta}, \mathrm{C}^{17}-\mathrm{H} / \mathrm{C}^{2}-\mathrm{H}_{\beta}, \mathrm{C}^{16}-\mathrm{H} /$ $\mathrm{C}^{15}-\mathrm{H}, \mathrm{C}^{16}-\mathrm{H} / \mathrm{C}^{2}-\mathrm{H}_{\alpha}, \mathrm{C}^{15}-\mathrm{H} / \mathrm{C}^{19}-\mathrm{H}, \mathrm{C}^{18}-\mathrm{H} / \mathrm{C}^{19}-\mathrm{H}, \mathrm{C}^{10}-\mathrm{H} / \mathrm{C}^{9}-\mathrm{H}$, $\mathrm{C}^{10}-\mathrm{H} / \mathrm{C}^{11}-\mathrm{OCH}_{3}, \mathrm{C}^{9}-\mathrm{H} / \mathrm{C}^{19}-\mathrm{H}, \mathrm{C}^{9}-\mathrm{H} / \mathrm{C}^{7}-\mathrm{H}_{\alpha}, \mathrm{C}^{3}-\mathrm{H}_{\alpha} / \mathrm{C}^{21}-\mathrm{H}_{\alpha}, \mathrm{C}^{3}-$ $\mathrm{H}_{\alpha} / \mathrm{C}^{2}-\mathrm{H}_{\alpha}, \mathrm{C}^{3}-\mathrm{H}_{\alpha} / \mathrm{C}^{2}-\mathrm{H}_{\beta}, \mathrm{N}^{20}-\mathrm{H} / \mathrm{C}^{19}-\mathrm{H}, \mathrm{C}^{7}-\mathrm{H}_{\beta} / \mathrm{C}^{7}-\mathrm{H}_{\alpha}, \mathrm{C}^{7}-\mathrm{H}_{\beta} / \mathrm{C}^{6}-$ $\mathrm{H}_{\alpha}, \mathrm{C}^{21}-\mathrm{H}_{\beta} / \mathrm{C}^{21}-\mathrm{H}_{\alpha}, \mathrm{C}^{21}-\mathrm{H}_{\beta} / \mathrm{C}^{2}-\mathrm{H}_{\beta}, \mathrm{C}^{6}-\mathrm{H}_{\alpha} / \mathrm{C}^{7}-\mathrm{H}_{\alpha}, \mathrm{C}^{2}-\mathrm{H}_{\alpha} / \mathrm{C}^{2}-\mathrm{H}_{\beta}$.
(3S,65)-13-Oxa-4,20-diazatetracyelo[12.2.2.2 $\left.2^{3,6} .1^{8,12}\right]$ heniecosa-8,10,-12(19),14,16,17-hexaen-11-ol (1, (+)-Piperazinomycin). A solution of $13(6.2 \mathrm{mg}, 0.02 \mathrm{mmol})$ in HOAc $(0.5 \mathrm{~mL})$ was treated with $\mathrm{HBr}(48 \%$, 0.1 mL) at $25^{\circ} \mathrm{C}$, and the resulting reaction solution was warmed at reflux for 1 h . The volatiles were removed in vacuo, and the residue was treated with saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$. The aqueous phase was extracted with $10 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{CHCl}_{3}(8 \times 5 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaCl}(2 \times 5 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. Flash chromatography $\left(\mathrm{SiO}_{2}, 1.5 \times 3 \mathrm{~cm}, 5-15 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{CHCl}_{3}\right.$ gradient elution) afforded $1(4.8 \mathrm{mg}, 5.9 \mathrm{mg}$ theoretical, 82%) as a white solid: mp 103-104 ${ }^{\circ} \mathrm{C}\left(\right.$ lit $\left.{ }^{1} \mathrm{mp} 102-104^{\circ} \mathrm{C}\right) ;[\alpha]^{25} \mathrm{D}+31\left(c 0.2, \mathrm{CH}_{3} \mathrm{OH}\right)$, [lit ${ }^{1}$ $\left.[\alpha]{ }^{23} \mathrm{D}+31\left(c 0.74, \mathrm{CH}_{3} \mathrm{OH}\right)\right] ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 7.56$ (dd, $\left.1 \mathrm{H}, J=2.2,8.3 \mathrm{~Hz}, \mathrm{C}^{16}-\mathrm{H}\right), 7.51\left(\mathrm{dd}, 1 \mathrm{H}, J=2.2,8.3 \mathrm{~Hz}, \mathrm{C}^{17}-\mathrm{H}\right.$), 7.06 (dd, $\left.1 \mathrm{H}, J=2.2,8.3 \mathrm{~Hz}, \mathrm{C}^{18}-\mathrm{H}\right), 7.03(\mathrm{dd}, 1 \mathrm{H}, J=2.2,8.3 \mathrm{~Hz}$, $\left.\mathrm{C}^{15}-\mathrm{H}\right), 6.62\left(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{C}^{10}-\mathrm{H}\right), 6.41(\mathrm{dd}, 1 \mathrm{H}, J=2.1,8.1 \mathrm{~Hz}$, $\left.\mathrm{C}^{9}-\mathrm{H}\right), 5.76\left(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{C}^{19}-\mathrm{H}\right), 3.33(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}$, $\left.\mathrm{C}^{21}-\mathrm{H}_{\beta}\right), 2.97-3.12\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}^{2}-\mathrm{H}_{\beta}, \mathrm{C}^{2}-\mathrm{H}_{\alpha}, \mathrm{C}^{3}-\mathrm{H}_{\alpha}, \mathrm{C}^{21}-\mathrm{H}_{\alpha}\right), 2.75(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{C}^{6}-\mathrm{H}_{\alpha}\right), 2.70\left(\mathrm{dd}, 1 \mathrm{H}, J=4.9,16.3 \mathrm{~Hz}, \mathrm{C}^{7}-\mathrm{H}_{\beta}\right), 2.53(\mathrm{t}, 1 \mathrm{H}, J=$ $\left.12.3 \mathrm{~Hz}, \mathrm{C}^{5}-\mathrm{H}_{\beta}\right), 2.49\left(\mathrm{dd}, 1 \mathrm{H}, J=3.0,16.3 \mathrm{~Hz}, \mathrm{C}^{7}-\mathrm{H}_{\alpha}\right), 2.26(\mathrm{dd}, 1 \mathrm{H}$, $\left.J=3.0,12.3 \mathrm{~Hz}, \mathrm{C}^{5}-\mathrm{H}_{\alpha}\right) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta 163.4,152.8$, $145.5,139.4,132.9,132.1,129.9,126.2,125.9,124.9,122.0,117.5,55.8$, $49.9,49.1,45.9,43.8,37.2$; IR (KBr) $\nu_{\max } 3300,2928,2864,1602,1509$, $1430,1380,1265,1195,1130,1024,990,938,825,786,680 \mathrm{~cm}^{-1}$; FABHRMS (NBA/NaI) m/e $297.1613\left(\mathrm{M}^{+}+\mathrm{H}, \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}\right.$ requires 297.1603).

The 2D ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY NMR spectrum of $1\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$ displayed diagnostic NOE crosspeaks for $\mathrm{C}^{16}-\mathrm{H} / \mathrm{C}^{19}-\mathrm{H}, \mathrm{C}^{16}-\mathrm{H} / \mathrm{C}^{15}-$ $\mathrm{H}, \mathrm{C}^{16}-\mathrm{H} / \mathrm{C}^{5}-\mathrm{H}_{\beta}, \mathrm{C}^{16}-\mathrm{H} / \mathrm{C}^{2}-\mathrm{H}_{\alpha}, \mathrm{C}^{17}-\mathrm{H} / \mathrm{C}^{18}-\mathrm{H}, \mathrm{C}^{17}-\mathrm{H} / \mathrm{C}^{21}-\mathrm{H}_{\beta}, \mathrm{C}^{17}-$ $\mathrm{H} / \mathrm{C}^{2}-\mathrm{H}_{\beta}, \mathrm{C}^{15}-\mathrm{H} / \mathrm{C}^{19}-\mathrm{H}, \mathrm{C}^{10}-\mathrm{H} / \mathrm{C}^{9}-\mathrm{H}, \mathrm{C}^{9}-\mathrm{H} / \mathrm{C}^{7}-\mathrm{H}_{\beta}, \mathrm{C}^{9}-\mathrm{H} / \mathrm{C}^{7}-\mathrm{H}_{\alpha}$, $\mathrm{C}^{19}-\mathrm{H} / \mathrm{C}^{5}-\mathrm{H}_{\beta}, \mathrm{C}^{21}-\mathrm{H}_{\beta} / \mathrm{C}^{21}-\mathrm{H}_{\alpha}, \mathrm{C}^{21}-\mathrm{H}_{\beta} / \mathrm{C}^{3}-\mathrm{H}_{\alpha}, \mathrm{C}^{2}-\mathrm{H}_{\beta} / \mathrm{C}^{2}-\mathrm{H}_{\alpha}, \mathrm{C}^{2}-$ $\mathrm{H}_{\beta} / \mathrm{C}^{3}-\mathrm{H}_{\alpha}, \mathrm{C}^{2}-\mathrm{H}_{\alpha} / \mathrm{C}^{3}-\mathrm{H}_{\alpha}, \mathrm{C}^{21}-\mathrm{H}_{\alpha} / \mathrm{C}^{3}-\mathrm{H}_{\alpha}, \mathrm{C}^{21}-\mathrm{H}_{\alpha} / \mathrm{C}^{6}-\mathrm{H}_{\alpha}, \mathrm{C}^{6}-\mathrm{H}_{\alpha} /$ $\mathrm{C}^{7}-\mathrm{H}_{\alpha}, \mathrm{C}^{6}-\mathrm{H}_{\alpha} / \mathrm{C}^{7}-\mathrm{H}_{\beta}, \mathrm{C}^{6}-\mathrm{H}_{\alpha} / \mathrm{C}^{5}-\mathrm{H}_{\beta}, \mathrm{C}^{6}-\mathrm{H}_{\alpha} / \mathrm{C}^{5}-\mathrm{H}_{\alpha}, \mathrm{C}^{7}-\mathrm{H}_{\beta} / \mathrm{C}^{7}-\mathrm{H}_{\alpha}$, $\mathrm{C}^{5}-\mathrm{H}_{\beta} / \mathrm{C}^{5}-\mathrm{H}_{\alpha}$.

Acknowledgment. We gratefully acknowledge the financial support of the National Institutes of Health (Grant CA 41101) and the award of a Glaxo fellowship to J.Z.

[^0]: * Abstract published in Advance ACS Abstracts, December 1, 1993.
 (1) Tamai, S.; Kaneda, M.; Nakamura, S. J. Antibiot. 1982, 35, 1130.
 (2) Kaneda, M.; Tamai, S.; Nakamura, S.; Hirata, T.; Kushi, Y.; Suga, T. J. Antibiot. 1982, 35, 1137.
 (3) Jolad, S. D.; Hoffmann, J. J.; Torrance, S. J.; Wiedhopf, R. M.; Cole, J. R.; Arora, S. K.; Bates, R. B.; Gargiulo, R. L.; Kriek, G. R. J. Am. Chem. Soc. 1977, 99, 8040.
 (4) Itokawa, H.; Takeya, K.; Mori, N.; Sonobe, T.; Mihashi, S.; Hamanaka, T. Chem. Pharm. Bull. 1986, 34, 3762. Itokawa, H.; Takeya, K.; Mihara, K.; Mori, N.; Hamanaka, T.; Sonobe, T.; Iitaka, Y. Chem. Pharm. Bull. 1983, 31, 1424. Itokawa, H.; Takeya, K.; Mori, N., Kidokoro, S.; Yamamoto, H. Planta Med. 1984, 51, 313. Itokawa, H.; Takeya, K.; Mori, N.; Sonobe, T.; Serisawa, N.; Hamanaka, T.; Mihashi, S. Chem. Pharm. Bull. 1984, 32, 3216. Itokawa, H.; Takeya, K.; Mori, N.; Takanashi, M.; Yamamoto, H.; Sonobe, T.; Kidokoro,S. Gann. 1984, 75, 929 . Itokawa, H.; Morita, H.; Takeya, K.; Mori, N.; Hamanaka, T.; Sonobe, T.; Mihara, K. Chem. Pharm. Bull. 1984, 32, 284. Itokawa, H.; Yamamiya, T.; Morita, H.; Takeya, K. J. Chem. Soc., Perkin Trans. 1 1992, 455 . Itokawa, H.; Morita, H.; Takeya, K.; Tomioka, N.; Itai, A. Chem. Lett. 1991, 2217.
 (5) Sano, S.;Ikai, K.; Katayama, K.; Takesato, K.; Nakamura, T.; Obayashi, A.; Ezure, Y.; Enomoto, H. J. Antibiot. 1986, 39, 1685. Sano, S.; Ikai, K.; Kuroda, H.; Nakamura, T.; Obayashi, A.; Ezure, Y.; Enomoto, H. J. Antibiot. 1986, 39, 1674.
 (6) Yasuzawa, T.; Shirahata, K.; Sano, H. J. Antibiot. 1987, 40, 455. Kase, H.; Kaneko, M.; Yamada, K. J. Antibiot. 1987, 40, 450.
 (7) Boger, D. L.; Yohannes, D. J. Org. Chem. 1988, 53, 487.
 (8) Boger, D. L.; Yohannes, D. Tetrahedron Lett. 1989, 30, 2053.
 (9) Boger, D. L.; Yohannes, D. J. Org. Chem. 1990, 55, 6000. Boger, D. L.; Yohannes, D. J. Org. Chem. 1989, 54, 2498. Boger, D. L.; Yohannes, D. Tetrahedron Lett. 1989, 30, 5061 . Suzuki, Y.; Nishiyama, S.; Yamamura, S. Tetrahedron Lett. 1989, 30, 6043. Evans, D. A.; Ellman, J. A.; DeVries, K. M. J. Am. Chem. Soc. 1989, 111, 8912 . Evans, D. A.; Ellman, J. A. J. Am. Chem. Soc. 1989, 111, 1063. Schmidt, U.; Weller, D.; Holder, A.; Lieberknecht, A. Tetrahedron Lett. 1988, 29, 3227. Rao, A. V. R.; Chakraborty, T. K.; Reddy, K. L.; Rao, A. S. Tetrahedron Lett. 1992, 33, 4799.
 (10) Boger, D. L.; Yohannes, D. J. Am. Chem. Soc. 1991, 113, 1427. Inaba, T.; Umezawa, I.; Yuasa, M.; Inoue, T.; Mihashi, S.; Itokawa, H.; Ogura, K. J. Org. Chem. 1987, 52, 2957. Deshpande, V. H.; Gokhale, N. J. Tetrahedron Lett. 1992, 33, 4213. Chakraborty, T. K.; Reddy, G. V. J. Org. Chem. 1992, 57, 5462.
 (11) Boger, D. L.; Yohannes, D.; Zhou, J.; Patane, M. A. J. Am. Chem. Soc. 1993, 115, 3420.
 (12) Boger, D. L.; Sakya, S. M.; Yohannes, D. J. Org. Chem. 1991, 56, 4204.
 (13) Boger, D. L.; Yohannes, D.; Myers, J. B., Jr. J. Org. Chem. 1992, 57, 1319.
 (14) Boger, D. L.; Yohannes, D. Synlett 1991, 33, 15.
 (15) Boger, D. L.; Myers, J. B., Jr. J. Org. Chem. 1991, 56, 5385.
 (16) Boger, D. L.; Myers, J. B., Jr.; Yohannes, D.; Kitos, P. A.; Suntornwat, O.; Kitos, J. C. Bioorg. Med. Chem. Lett. 1991, l, 313.
 (17) Boger, D. L.; Yohannes, D. Bioorg. Med. Chem. Lett. 1993, 3, 245.
 (18) Boger, D. L.; Yohannes, D. J. Org. Chem. 1991, 56, 1763.
 (19) Boger, D. L.; Nomoto, Y.; Teegarden, B. R. J. Org. Chem. 1993, 58, 1425.

[^1]: (20) Kato, T.; Suzumura, Y.; Takamoto, S.; Ota, K. Anticancer Res. 1987, 7, 329.
 (21) Sano, S.; Ikai, K.; Yoshikawa, Y.; Nakamura, T.; Obayashi, A. J. Antibiot. 1987, 40, 512. Sano, S.; Kuroda, H.; Ueno, M.; Yoshikawa, Y.; Nakamura, T.; Obayashi, A. J. Antibiot. 1987, 40, 519.
 (22) Bates, R. B.; Gin, S. L.; Hassen, M. A.; Hruby, V. J.; Janda, K. D.; Kriek, G. R.; Michaud, J.-P.; Vine, D. B. Heterocycles 1984, 22, 785. Bates, R. B.; Janda, K. J. Org. Chem. 1982, 47, 4374.
 (23) Jung, M. E.; Rohloff, J. C. J. Org. Chem. 1985, 50, 4909.
 (24) Inoue, T.; Naitoh, K.; Kosemura, S.; Umezawa, I.; Sonobe, T.; Serizawa, N.; Mori, N. Heterocycles 1983, $20,397$.
 (25) Feng, X.; Olsen, R. K. J. Org. Chem. 1992, 57, 5811 . Olsen, R. K.; Feng, X. Tetrahedron Lett. 1991, 32, 5721.
 (26) Hobbs, D. W.; Still, W. C. Tetrahedron Lett. 1989, 30, 5405.
 (27) Justus, K.; Steglich, W. Tetrahedron Lett. 1991, 32, 5781.
 (28) Pearson, A. J.; Park, J. G. J. Org. Chem. 1992, 57, 1744. Pearson, A. J.; Park, J. G.; Zhu, P. Y. J. Org. Chem. 1992, 57, 3583.
 (29) Stone, M. J.; Van Dyke, M. S.; Booth, P. M.; Williams, D. H. J. Chem. Soc., Perkin Trans. I, 1991, 1629.
 (30) Nishiyama, S.; Nakamura, K.;Suzuki, Y.; Yamamura, S. Tetrahedron Lett. 1986, 27, 4481.
 (31) Nishiyama, S.; Suzuki, Y.; Yamamura, S. Tetrahedron Lett. 1988, 29, 559.
 (32) Nishiyama, S.; Suzuki, Y.; Yamamura, S. Tetrahedron Lett. 1989,
 379 . 30, 379.

[^2]: (33) Boger, D. L.; Yohannes, D. J. Org. Chem. 1987, 52, 5283.
 (34) Schwabacher, A. W.; Lee, J.; Lei, H. J. Am. Chem. Soc. 1992, 114, 7597.
 (35) Suzuki, K.; Sasaki, Y.; Endo, N.; Mihara, Y. Chem. Pharm. Bull. 1981, 29, 233.

[^3]: (36) For 14: $\mathrm{mp} 189-190^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}-32\left(c 0.25, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (CD$\left.\mathrm{Cl}_{3}, 400 \mathrm{MHz}\right) \delta 7.40\left(\mathrm{dd}, 1 \mathrm{H}, J=2.1,8.4 \mathrm{~Hz}, \mathrm{C}^{15}-\right.$ or $\left.\mathrm{C}^{18}-\mathrm{H}\right), 7.21(\mathrm{dd}$, $1 \mathrm{H}, J=2.1,8.4 \mathrm{~Hz}, \mathrm{C}^{18}$ or $\mathrm{C}^{15}-\mathrm{H}$), 7.08 (dd, $1 \mathrm{H}, J=2.4,8.4 \mathrm{~Hz}, \mathrm{C}^{16}-\mathrm{or}$ $\left.\mathrm{C}^{17}-\mathrm{H}\right), 6.98\left(\mathrm{dd}, 1 \mathrm{H}, J=2.4,8.4 \mathrm{~Hz}, \mathrm{C}^{17}-\right.$ or $\left.\mathrm{C}^{16}-\mathrm{H}\right), 6.75(\mathrm{~d}, 1 \mathrm{H}, J=8.2$ $\left.\mathrm{Hz}, \mathrm{C}^{5}-\mathrm{H}\right), 6.57\left(\mathrm{dd}, 1 \mathrm{H}, J=2.0,8.2 \mathrm{~Hz}, \mathrm{C}^{6}-\mathrm{H}\right), 5.87(\mathrm{~d}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}$, $\left.\mathrm{N}^{10}-\mathrm{H}\right), 5.17(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}, \mathrm{NHBOC}), 5.05\left(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{C}^{19}-\mathrm{H}\right)$, 4.07-4.15 (m, 2H, C9 ${ }^{9}$ and $\mathrm{C}^{12-\mathrm{H}), 3.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 3.66(\mathrm{~s}, 3 \mathrm{H}, ~}$ $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.25\left(\mathrm{dd}, 1 \mathrm{H}, J=5.0,12.2 \mathrm{~Hz}, \mathrm{C}^{8}-\right.$ or $\left.\mathrm{C}^{13}-\mathrm{H}\right), 2.86(\mathrm{t}, 1 \mathrm{H}, J=$ $12.0 \mathrm{~Hz}, \mathrm{C}^{13}$ - or $\left.\mathrm{C}^{8}-\mathrm{H}\right), 2.84\left(\mathrm{~d}, 1 \mathrm{H}, J=16.6 \mathrm{~Hz}, \mathrm{C}^{8}-\right.$ or $\left.\mathrm{C}^{13}-\mathrm{H}\right), 2.67(\mathrm{dd}$, $1 \mathrm{H}, J=11.0,16.7 \mathrm{~Hz}, \mathrm{C}^{13}-$ or $\left.\mathrm{C}^{8}-\mathrm{H}\right), 1.44\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 171.8,171.5,157.2,155.2,152.3,146.0,134.5,132.5$, $130.5,129.8,125.0,124.7,121.2,115.0,111.5,80.3,58.2,56.1,54.0,52.5$, 38.9, 34.3, 28.3; IR (KBr) $\nu_{\text {max }} 3347,3300,2954,2932,2853,1748,1718$, $1664,1587,1517,1436,1367,1264,1205,1162,1130,1015,978,891,869$, 838, 797, 762, $729 \mathrm{~cm}^{-1}$; FABHRMS (NBA) $m / e 471.2125\left(\mathrm{M}^{+}+\mathrm{H}\right.$, $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires 471.2131).

[^4]: (37) For 15: white needles, mp $228-229^{\circ} \mathrm{C} ;[\alpha]^{2 s_{\mathrm{D}}}-25\left(c 0.4, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.25\left(\mathrm{dd}, 1 \mathrm{H}, J=2.2,8.3 \mathrm{~Hz}, \mathrm{C}^{16}-\right.$ or $\left.\mathrm{C}^{19}-\mathrm{H}\right)$, $7.21\left(\mathrm{dd}, 1 \mathrm{H}, J=2.2,8.3 \mathrm{~Hz}, \mathrm{C}^{19-}\right.$ or $\left.\mathrm{C}^{16}-\mathrm{H}\right), 6.92(\mathrm{dd}, 1 \mathrm{H}, J=2.4,8.4$ $\mathrm{Hz}, \mathrm{C}^{17}-$ or $\left.\mathrm{C}^{18}-\mathrm{H}\right), 6.77\left(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{C}^{5}-\mathrm{H}\right), 6.66(\mathrm{dd}, 1 \mathrm{H}, J=2.0$, $8.2 \mathrm{~Hz}, \mathrm{C} 6-\mathrm{H}), 6.21$ (two $\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 4.85(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}$, $\left.\mathrm{C}^{20}-\mathrm{H}\right), 4.44-4.47\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}^{9}-\right.$ and $\left.\mathrm{C}^{13}-\mathrm{H}\right), 4.06(\mathrm{dd}, 1 \mathrm{H}, J=12.1,16.2 \mathrm{~Hz}$, $\mathrm{C}^{8}-$ or $\left.\mathrm{C}^{14}-\mathrm{H}\right), 3.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.31(\mathrm{dd}, 1 \mathrm{H}$, $J=3.6,13.9 \mathrm{~Hz}, \mathrm{C}^{8}-$ or $\left.\mathrm{C}^{14}-\mathrm{H}\right), 3.03\left(\mathrm{dd}, 1 \mathrm{H}, J=3.2,12.4 \mathrm{~Hz}, \mathrm{C}^{14}-\right.$ or $\left.\mathrm{C}^{8}-\mathrm{H}\right), 3.00\left(\mathrm{dd}, 1 \mathrm{H}, J=1.9,14.1 \mathrm{~Hz}, \mathrm{C}^{14}-\right.$ or $\left.\mathrm{C}^{8}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 173.1,169.9,158.7,157.8,152.4,147.0,133.4,130.7,130.6$, $130.5,124.7,123.0,121.9,115.8,111.7,58.2,56.1,55.5,53.3,36.1,30.3$; IR (KBr) $\nu_{\max } 3336,3028,2938,2841,1769,1741,1720,1586,1517,1502,1412$, $1265,1206,1129,1024,1005,926,875,834,790,759,667,631 \mathrm{~cm}^{-1}$; FABHRMS (NBA) $m / e ~ 396.1333\left(\mathrm{M}^{+}, \mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6}\right.$ requires 396.1321).
 (38) For 16: pale-yellowsolid, mp $180-181^{\circ} \mathrm{C}$; $[\alpha]^{25} \mathrm{D}-196\left(\mathrm{c} 0.2, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.63\left(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{C}^{3}-\right.$ and $\left.\mathrm{C}^{5}-\mathrm{H}\right)$,
 $6.72\left(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{C}^{2}-\mathrm{H}\right), 6.68\left(\mathrm{dd}, 1 \mathrm{H}, J=2.0,8.2 \mathrm{~Hz}, \mathrm{C}^{6}-\mathrm{H}\right), 5.58$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 5.29(\mathrm{brs}, 1 \mathrm{H}, \mathrm{NH}) 4.84$ (dd, $1 \mathrm{H}, J=6.5,10.4 \mathrm{~Hz}, \mathrm{C} H \mathrm{COOMe}$), 4.06 (ddd, $1 \mathrm{H}, J=1.2,3.8,10.2 \mathrm{~Hz}, \mathrm{CHNH}$), $3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 3.76$ (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}$), $3.30-3.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right.$), 3.01 (dd, $1 \mathrm{H}, J=3.8,13.9$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{Ar}\right), 2.30\left(\mathrm{dd}, 1 \mathrm{H}, J=10.2,13.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ar}\right) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, $100 \mathrm{MHz}) \delta 172.0,168.9,155.6,145.53,145.48,138.1,135.2,131.1,129.6$, $120.6,115.3,110.8,92.9,57.9,55.9,53.5,53.0,37.7,33.4$; $\mathrm{IR}(\mathrm{KBr}) \nu_{\text {max }}$ 3429, $3349,2955,2925,2849,1743,1718,1693,1592,1513,1431,1267$, 1149, 1133, 1010, 959, 872, 798, 767, 669, $625 \mathrm{~cm}^{-1}$; FABHRMS (NBA/ $\mathrm{CsI}) \mathrm{m} / \mathrm{e} 656.9486\left(\mathrm{M}^{+}+\mathrm{Cs}, \mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{I}\right.$ requires 656.9499).
 (39) For 17: pale-yellow solid, mp 168-169 ${ }^{\circ} \mathrm{C} ;[\alpha]^{25^{\circ}}+29\left(c 0.45, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.52\left(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{C}^{3}-\right.$ and $\left.\mathrm{C}^{5}-\mathrm{H}\right)$, $7.25-7.35(\mathrm{~m}, 5 \mathrm{H}, \mathrm{PhH}), 6.86\left(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{C}^{2}-\right.$ and $\left.\mathrm{C}^{6}-\mathrm{H}\right), 6.66(\mathrm{~d}$, $\left.1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{C}^{5}-\mathrm{H}\right), 6.57\left(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{C}^{2}-\mathrm{H}\right), 6.44(\mathrm{dd}, 1 \mathrm{H}, J=$ $\left.2.0,8.0 \mathrm{~Hz}, \mathrm{C}^{6}-\mathrm{H}\right), 5.88(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 5.42(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{NH}), 5.07$ (d, $\left.1 \mathrm{H}, J=12.3 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CHH}\right), 5.02\left(\mathrm{~d}, 1 \mathrm{H}, J=12.3 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH} H\right), 4.72$ (dd, $1 \mathrm{H}, J=5.7,13.3 \mathrm{~Hz}, \mathrm{CHCH}$) , 4.42 (dd, $1 \mathrm{H}, J=5.5,13.0 \mathrm{~Hz}, \mathrm{CHCH}$), $3.79(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH} 3), 3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 2.88-3.02\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right)$; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 171.3,170.2,155.9,145.8,145.5,137.6$, $135.9,131.3,128.5,128.3,128.2,127.9,120.6,115.5,110.7,92.4,67.1,55.8$, $55.6,53.8,52.5,37.9,37.0$; IR (KBr) $\nu_{\text {max }} 3303,3033,2950,2840,1740,1701$, $1651,1591,1534,1512,1441,1341,1272,1214,1132,1027,1007,792,752$, $738,697 \mathrm{~cm}^{-1} ;$ FABHRMS (NBA/CsI) $m / e 765.0081\left(\mathrm{M}^{+}+\mathrm{Cs}, \mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{I}\right.$ requires 765.0074).
 (40) For 18: white solid, $\mathrm{mp} 149-150^{\circ} \mathrm{C}$; $[\alpha]^{25} \mathrm{D}+34\left(c 0.5, \mathrm{CHCl}_{3}\right),{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.59\left(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{C}^{3}-\right.$ or $\left.\mathrm{C}^{5^{\prime}}-\mathrm{H}\right), 6.95$ (d, $2 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{C}^{2}-$ or $\mathrm{C}^{6}-\mathrm{H}$), $6.73\left(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{NHSO}_{2}\right.$), 6.89 $\left(\mathrm{d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{C}^{5}-\mathrm{H}\right), 6.61\left(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{C}^{2}-\mathrm{H}\right), 6.48(\mathrm{dd}, 1 \mathrm{H}$, $\left.J=2.0,8.2 \mathrm{~Hz}, \mathrm{C}^{6}-\mathrm{H}\right), 5.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 5.21(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{HNCO})$, $4.73-4.77\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 4.03-4.08\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 3.81(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{ArOCH}_{3}\right), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 2.92-3.08(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHCH} 2), 2.85(\mathrm{dd}, 1 \mathrm{H}$, $J=8.7,14.0 \mathrm{~Hz}, \mathrm{CHCHH}), 2.49-2.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{2}\right), 0.72-0.78(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{TMS}\right),-0.062\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 171.4$, $170.2,146.0,145.5,137.8,135.9,131.8,128.2,120.9,115.6,110.9,92.9,58.3$, $55.8,53.6,52.5,50.0,38.4,37.1,9.9,-2.2$; IR (KBr) $\nu_{\max } 3330,2953,2842$, $1740,1663,1591,1512,1438,1319,1274,1260,1215,1135,1026,1008,963$, 895, 856, 831, 761, $698 \mathrm{~cm}^{-1}$; FABHRMS (NBA/CsI) m/e $795.0033\left(\mathrm{M}^{+}\right.$ $+\mathrm{Cs}, \mathrm{C}_{25} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{SiSI}$ requires 795.0033).

[^5]: (41) For 19: pale yellow solid, $\mathrm{mp} 279-280^{\circ} \mathrm{C}$; $[\alpha]^{25} \mathrm{D}+12.5\left(c 0.65, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.66(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{NH}), 7.59(\mathrm{~d}, 2 \mathrm{H}$, $J=7.7 \mathrm{~Hz}, \mathrm{C}^{3^{\prime}}-$ and $\left.\mathrm{C}^{5^{\prime}}-\mathrm{H}\right), 6.92\left(\mathrm{~d}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{C}^{2}-\right.$ and $\left.\mathrm{C}^{6^{\prime}}-\mathrm{H}\right), 6.71$ $\left(\mathrm{d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{C}^{5}-\mathrm{H}\right), 6.61\left(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{C}^{2}-\mathrm{H}\right), 6.48(\mathrm{dd}, 1 \mathrm{H}$, $\left.J=2.0,8.2 \mathrm{~Hz}, \mathrm{C}^{6}-\mathrm{H}\right), 4.78\left(\mathrm{dd}, 1 \mathrm{H}, J=6.0,13.6 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right), 3.83(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{ArOCH} 3), 3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.52-3.56(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH} 2) ; 2.91-$ $3.10(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHCH} 2), 2.60(\mathrm{dd}, 1 \mathrm{H}, J=9.0,13.6 \mathrm{~Hz}, \mathrm{CHCHH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 173.5,171.9,145.7,145.5,137.7,137.3,131.4,128.9$, $120.6,115.6,110.7,92.2,56.0,55.9,52.8,52.3,40.2,37.3$; $\mathrm{IR}(\mathrm{KBr}) \nu_{\text {max }}$ $3379,3299,2944,2840,1734,1653,1586,1543,1512,1442,1356,1283$, 1218, 1207, 1132, 1026, 1005, 960, 894, 842, 785, $643 \mathrm{~cm}^{-1}$; FABHRMS (NBA/CsI) $m / e 630.9725\left(\mathrm{M}^{+}+\mathrm{Cs}, \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{I}\right.$ requires 630.9706).

[^6]: (42) For 20: pale-blue solid, $\mathrm{mp} 84.5-85^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}-1.6\left(c 0.55, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.21-7.27(\mathrm{~m}, 5 \mathrm{H}, \mathrm{PhH}), 6.74(\mathrm{~d}, 1 \mathrm{H}, J=$ $\left.8.2 \mathrm{~Hz}, \mathrm{C}^{5}-\mathrm{H}\right), 6.73\left(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}, \mathrm{C}^{2}-\mathrm{H}\right), 6.62(\mathrm{dd}, 1 \mathrm{H}, J=2.2,8.2$ $\left.\mathrm{Hz}, \mathrm{C}^{6}-\mathrm{H}\right), 5.70(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 3.85(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}), 3.80(\mathrm{~d}, 1 \mathrm{H}, J=$ $13.4 \mathrm{~Hz}, \mathrm{CH} \mathrm{HPh}), 3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.63(\mathrm{~d}, 1 \mathrm{H}, J=13.4 \mathrm{~Hz}, \mathrm{CHHPh})$, $3.50(\mathrm{t}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CHCH}), 2.82-2.91\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2}\right), 1.78(\mathrm{br} \mathrm{s}$, $2 \mathrm{H}, \mathrm{NH}$ and OH$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 175.0,145.4,139.5,130.3$, 128.6, 128.3, 128.1, 127.0, 120.6, 115.4, 110.5, 62.0, 55.9, 52.0, 51.6, 39.0; IR (KBr) $\nu_{\max } 3300,3026,2932,1734,1585,1508,1444,1275,1226,1175$, $1139,1030,991,820,749,699 \mathrm{~cm}^{-1}$; FABHRMS (NBA/CsI) m/e 448.0522 $\left(\mathrm{M}^{+}+\mathrm{Cs}, \mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{4}\right.$ requires 448.0525). For 21: white solid, mp 119.5$120.5^{\circ} \mathrm{C} ;[\alpha]^{2 s_{\mathrm{D}}}{ }^{-6.1}\left(c 0.65, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.65$ (d, $2 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{C}^{3}$ - and $\left.\mathrm{C}^{5}-\mathrm{H}\right), 6.97\left(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{C}^{2}\right.$ and $\mathrm{C}^{6}-\mathrm{H}$), 4.85-4.95 (m, 1H, CHCH2), $3.27(\mathrm{dd}, 1 \mathrm{H}, J=5.7,14.0 \mathrm{~Hz}, \mathrm{CHCHH}), 3.13$ $(\mathrm{dd}, 1 \mathrm{H}, J=5.7,14.0 \mathrm{~Hz}, \mathrm{CHCHH}), 1.42\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 168.2,154.8,142.1,141.0,139.8,139.2,138.5,136.6$, $137.9,134.6,131.3,93.0,80.8,54.1,37.4,28.2$; IR (KBr) $\nu_{\text {max }} 3358,2982$, $2938,1782,1690,1519,1368,1328,1252,1170,1132,1033,993,893,848$, $809 \mathrm{~cm}^{-1}$. For 22: pale-yellow oil, $[\alpha]^{25} \mathrm{D}+17\left(c \quad 0.25, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.62\left(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{C}^{3}-\right.$ and $\left.\mathrm{C}^{3}-\mathrm{H}\right), 7.22-7.28$ $(\mathrm{m}, 5 \mathrm{H}, \mathrm{PhH}), 7.02\left(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{C}^{2}-\right.$ and $\left.\mathrm{C}^{6^{\prime}}-\mathrm{H}\right), 7.01(\mathrm{dd}, 1 \mathrm{H}, J$ $\left.=2.2,8.4 \mathrm{~Hz}, \mathrm{C}^{6}-\mathrm{H}\right), 6.86\left(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{C}^{5}-\mathrm{H}\right), 6.78(\mathrm{~d}, 1 \mathrm{H}, J=2.2$ $\left.\mathrm{Hz}, \mathrm{C}^{2} \mathrm{H}\right), 5.02(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{NH}), 4.82(\mathrm{dd}, 1 \mathrm{H}, J=6.0,14.2 \mathrm{~Hz}$, $\mathrm{CH} N \mathrm{NHBOC}), 3.82(\mathrm{~d}, 1 \mathrm{H}, J=13.4 \mathrm{~Hz}, \mathrm{C} H \mathrm{HPh}), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right)$, $3.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.62(\mathrm{~d}, 1 \mathrm{H}, J=13.4 \mathrm{~Hz}, \mathrm{CHHPh}), 3.46(\mathrm{t}, 1 \mathrm{H}, J$ $=6.8 \mathrm{~Hz}, \mathrm{CHCOOMe}), 3.11-3.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2}\right), 2.87(\mathrm{~d}, 2 \mathrm{H}, J=6.8$ $\left.\mathrm{Hz}, \mathrm{CHCH}_{2}\right), 1.42\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 175.0$, $169.8,155.0,149.6,139.5,138.9,137.5,135.7,131.7,130.0,128.4,128.1$, $127.9,127.0,123.4,112.2,92.5,80.1,61.9,55.8,54.0,52.0,51.8,38.7,37.7$, 28.3; IR (KBr) $\nu_{\text {max }} 3364,2964,2843,1764,1725,1710,1587,1513,1484$, 1443, 1367, 1267, 1158, 1121, 1026, 1008, 899, 860, $809,734 \mathrm{~cm}^{-1} ;$ FABHRMS (NBA/CsI) $m / e 821.0730\left(\mathrm{M}^{+}+\mathrm{Cs}, \mathrm{C}_{32} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{I}\right.$ requires 821.0700).

